RESEARCH TOPICS IN WIND ENERGY 5 Ke Ma Power Electronics for the Next Generation Wind Turbine System 123 Research Topics in Wind Energy Volume 5 Series editor Joachim Peinke, University of Oldenburg, Oldenburg, Germany e-mail: [email protected] About this Series The series Research Topics in Wind Energy publishes new developments and advances in the fields of Wind Energy Research and Technology, rapidly and informally but with a high quality. Wind Energy is a new emerging research field characterized by a high degree of interdisciplinarity. The intent is to cover all the technical contents, applications, and multidisciplinary aspects of Wind Energy, embedded in the fields of Mechanical and Electrical Engineering, Physics, Turbulence, Energy Technology, Control, Meteorology and Long-Term Wind Forecasts, Wind Turbine Technology, System Integration and Energy Economics, as well as the methodologies behind them. Within the scope of the series are monographs,lecturenotes,selectedcontributionsfromspecializedconferencesand workshops, as well as selected PhD theses. Of particular value to both the contributors and the readership are the short publication timeframe and the worldwidedistribution,whichenablebothwideandrapiddisseminationofresearch output. The series is promoted under the auspices of the European Academy of Wind Energy. More information about this series at http://www.springer.com/series/11859 Ke Ma Power Electronics for the Next Generation Wind Turbine System 123 Ke Ma Department ofEnergy Technology Aalborg University Aalborg Denmark ISSN 2196-7806 ISSN 2196-7814 (electronic) Research Topicsin Wind Energy ISBN978-3-319-21247-0 ISBN978-3-319-21248-7 (eBook) DOI 10.1007/978-3-319-21248-7 LibraryofCongressControlNumber:2015944177 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this Frontmatterarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Preface ThestudyforthisbookwascarriedoutduringmyPh.D.intheperiodbetweenJune 2010andApril2013,atDepartmentofEnergyTechnologyinAalborgUniversity, Denmark. Sophisticated industry and long-term academic focus on wind power is one of the reasons I came here to do this research. After 3 years of unforgettable researches and experiences, I startto realize that thelarge-scale utilization of wind energycouldbefarmorechallengingthanIexpected.Andmoreimportantly,many oftheproblems aswellasthetechnologypotentialsmayhavenotbeenuncovered yet in this field. The purpose of this work is to study the power electronics used for the next generation wind turbine system. Some criteria and tools for evaluating and improving thecritical performancesof wind power converters havebeen proposed and established. It is the hope of the author that this book can address some emergingproblemsaswellaspossibilitiesforwindpowerconversion,andbecome an inspired reference for researchers in this field. IwouldliketoshowgratefulthankstoProf.FredeBlaabjergfortheimpressive and fruitful discussion during this study. The constructive discussions, patient corrections, and also continuous encouragements not only contribute to this work, but also have great influences on my researching, networking, managing, and supervising. Furthermore, I would like to sincerely acknowledge Prof. Marco LiserrefromKielUniversity,Germany,forhisinspiredsuggestionsandinvaluable help during this work. I also want to show regard to Prof. Dehong Xu from Zhejiang University, China for his supports and concerns, which are precious for my staying in Denmark. Aalborg Ke Ma March 2015 v Contents Part I Monograph 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 State-of-the-Art for Wind Power Generation. . . . . . . . . . . . . . 3 1.2 Development of Wind Power Technologies . . . . . . . . . . . . . . 5 1.2.1 Evolution of Wind Turbine Concepts . . . . . . . . . . . . . 5 1.2.2 Evolution of Power Electronics for Wind Turbines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Emerging Challenges for Wind Power Converter . . . . . . . . . . 8 1.3.1 More Grid Supports. . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Higher Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.3 Special Cost Considerations. . . . . . . . . . . . . . . . . . . . 13 1.3.4 Formulation of Overall Requirements. . . . . . . . . . . . . 14 1.4 Scopes of the Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Promising Topologies and Power Devices for Wind Power Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 Promising Converter Topologies. . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Traditional Two-Level Converters . . . . . . . . . . . . . . . 19 2.1.2 Multilevel Converters. . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.3 Multi-cell Converters . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Potential Power Semiconductor Devices . . . . . . . . . . . . . . . . 26 2.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Criteria and Tools for Evaluating Wind Power Converter . . . . . . 31 3.1 Importance of Thermal Stress in Wind Power Converter . . . . . 31 3.1.1 Thermal Stress Versus Reliability. . . . . . . . . . . . . . . . 32 3.1.2 Thermal Stress Versus Cost. . . . . . . . . . . . . . . . . . . . 34 vii viii Contents 3.2 Classification and Approach for the Thermal Stress Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 Classification of Thermal Stress in Wind Power Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.2 Methods and Models for Stress Analysis. . . . . . . . . . . 38 3.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 Thermal Stress of 10-MW Wind Power Converter Under Normal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1 Requirements and Conditions Under Normal Operation. . . . . . 45 4.2 Stress of Converter Imposed by Wind Speeds . . . . . . . . . . . . 47 4.2.1 Thermal Stress Under Steady-State Wind Speeds. . . . . 47 4.2.2 Thermal Stress Under Wind Speed Variations . . . . . . . 50 4.3 Stress of Converter Imposed by Grid Codes. . . . . . . . . . . . . . 51 4.3.1 Converter Efficiency Considering Reactive Power Demands by Grid Codes. . . . . . . . . . . . . . . . . 51 4.3.2 Thermal Stress Considering Reactive Power Demands by Grid Codes. . . . . . . . . . . . . . . . . . . . . . 53 4.4 A Thermal Control Method Utilizing Reactive Power . . . . . . . 55 4.4.1 Control Idea and Diagram. . . . . . . . . . . . . . . . . . . . . 55 4.4.2 Idea to Overcome the Reactive Power Limits . . . . . . . 56 4.4.3 Thermal Stress Considering Extended Q Ranges in Paralleled Converters . . . . . . . . . . . . . . . . . . . . . . 57 4.4.4 Thermal Control Results. . . . . . . . . . . . . . . . . . . . . . 57 4.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5 Stress Analysis of 3L-NPC Wind Power Converter Under Fault Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.1 Requirements and Conditions Under Fault Operation. . . . . . . . 63 5.2 Stress Analysis of Converter Under LVRT. . . . . . . . . . . . . . . 67 5.2.1 Electrical Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2.2 Thermal Behaviors. . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.3 Thermal Redistributed Modulations Under LVRT. . . . . . . . . . 71 5.3.1 Basic Idea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3.2 A Group of Modulation Methods. . . . . . . . . . . . . . . . 74 5.3.3 Loss and Thermal Improvements . . . . . . . . . . . . . . . . 77 5.3.4 Neutral Point Potential Control and Total Harmonic Distortion. . . . . . . . . . . . . . . . . . . . . . . . . 79 Contents ix 5.4 New Power Control Methods Under Unbalanced AC Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.4.1 Applicable Conditions and Control Structure. . . . . . . . 81 5.4.2 Control Ideas and Methods . . . . . . . . . . . . . . . . . . . . 82 5.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6 Conclusions and Future Works. . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.2 Proposals for Future Research Topics . . . . . . . . . . . . . . . . . . 97 7 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.1 Used Models for Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.1.1 Wind Speed Generator . . . . . . . . . . . . . . . . . . . . . . . 99 7.1.2 Wind Turbine Model . . . . . . . . . . . . . . . . . . . . . . . . 99 7.1.3 Generator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.1.4 Parameter for Thermal Impedance of Used IGCT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.2 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Part II Specially Selected Topics 8 The Impacts of Power Switching Devices to the Thermal Performances of 10 MW Wind Power NPC Converter. . . . . . . . . 107 8.1 Wind Power Converter for Case Study . . . . . . . . . . . . . . . . . 107 8.2 Thermal-Related Characteristics of Different Power Switching Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8.2.1 Switching Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.2.2 Conduction Voltage and Loss . . . . . . . . . . . . . . . . . . 110 8.2.3 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . 112 8.3 Thermal Analysis of Different Device Solutions. . . . . . . . . . . 112 8.3.1 Normal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.3.2 Low-Voltage-Ride-Through Operation . . . . . . . . . . . . 115 8.3.3 Wind Gust Operation . . . . . . . . . . . . . . . . . . . . . . . . 120 8.3.4 Summary of Thermal Performances Under Different Operation Modes . . . . . . . . . . . . . . . 121 8.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 9 Reliability-Cost Models for the Power Switching Devices of Wind Power Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 9.1 Loss Model with Chip Number Information. . . . . . . . . . . . . . 124 9.2 Thermal Impedance Model with Chip Number Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 x Contents 9.3 Analytical Solution of Junction Temperature with Chip Number Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 10 Electro-Thermal Model of Power Semiconductors Dedicated for Both Case and Junction Temperature Estimation. . . . . . . . . . 139 10.1 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 11 Reactive Power Influence on the Thermal Cycling of Multi-MW Wind Power Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 11.1 Effect of Reactive Power in Case of Single Converter. . . . . . . 146 11.2 Effect of Reactive Power in Case of Paralleled Converters. . . . 152 11.3 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 12 Thermal Loading of Several Multilevel Converter Topologies for 10 MW Wind Turbines Under Low Voltage Ride Through. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 12.1 Promising Topologies and Basic Design . . . . . . . . . . . . . . . . 159 12.2 Operation Status Under Balanced LVRT . . . . . . . . . . . . . . . . 161 12.3 Loss Distribution Under Balanced LVRT. . . . . . . . . . . . . . . . 164 12.4 Thermal Distribution Under Balanced LVRT . . . . . . . . . . . . . 166 12.5 Unbalanced LVRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 12.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 13 Another Groups of Thermal Optimized Modulation Methods of Three-Level Neutral-Point-Clamped Inverter Under Low Voltage Ride Through. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 13.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 13.2 Neutral Point Potential Control Method. . . . . . . . . . . . . . . . . 183 13.3 Loss and Thermal Performances. . . . . . . . . . . . . . . . . . . . . . 185 13.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 14 Limits of the Power Controllability of Three-Phase Converter with Unbalanced AC Source. . . . . . . . . . . . . . . . . . . . 189 14.1 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196