POWER ELECTRONIC CONVERTERS FOR MICROGRIDS POWER ELECTRONIC CONVERTERS FOR MICROGRIDS SuleimanM.Sharkh UniversityofSouthampton,UnitedKingdom MohammadA.Abusara UniversityofExeter,UnitedKingdom GeorgiosI.Orfanoudakis UniversityofSouthampton,UnitedKingdom BabarHussain PakistanInstituteofEngineeringandAppliedSciences,Pakistan Thiseditionfirstpublished2014 ©2014JohnWiley&SonsSingaporePte.Ltd. Registeredoffice JohnWiley&SonsSingaporePte.Ltd.,1FusionopolisWalk,#07-01SolarisSouthTower,Singapore 138628. Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapply forpermissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystemor transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recording,scanning, orotherwise,exceptasexpresslypermittedbylaw,withouteitherthepriorwrittenpermissionofthe Publisher,orauthorizationthroughpaymentoftheappropriatephotocopyfeetotheCopyright ClearanceCenter.RequestsforpermissionshouldbeaddressedtothePublisher,JohnWiley&Sons SingaporePte.Ltd.,1FusionopolisWalk,#07-01SolarisSouthTower,Singapore138628,tel: 65-66438000,fax:65-66438008,email:[email protected]. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.All brandnamesandproductnamesusedinthisbookaretradenames,servicemarks,trademarksor registeredtrademarksoftheirrespectiveowners.ThePublisherisnotassociatedwithanyproductor vendormentionedinthisbook.Thispublicationisdesignedtoprovideaccurateandauthoritative informationinregardtothesubjectmattercovered.ItissoldontheunderstandingthatthePublisheris notengagedinrenderingprofessionalservices.Ifprofessionaladviceorotherexpertassistanceis required,theservicesofacompetentprofessionalshouldbesought. MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMathWorksdoes notwarranttheaccuracyofthetextorexercisesinthisbook.Thisbook’suseordiscussionof MATLAB® softwareorrelatedproductsdoesnotconstituteendorsementorsponsorshipbyThe MathWorksofaparticularpedagogicalapproachorparticularuseoftheMATLAB® software. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbestefforts inpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Itissoldontheunderstandingthatthepublisheris notengagedinrenderingprofessionalservicesandneitherthepublishernortheauthorshallbeliable fordamagesarisingherefrom.Ifprofessionaladviceorotherexpertassistanceisrequired,theservices ofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationDatahasbeenappliedfor. AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN978-0-470-82403-0 Setin11/13ptTimesbyLaserwordsPrivateLimited,Chennai,India 1 2014 Contents AbouttheAuthors xi Preface xiii Acknowledgments xv 1 Introduction 1 1.1 ModesofOperationofMicrogridConverters 2 1.1.1 GridConnectionMode 2 1.1.2 Stand-AloneMode 3 1.1.3 BatteryChargingMode 3 1.2 ConverterTopologies 4 1.3 ModulationStrategies 6 1.4 ControlandSystemIssues 7 1.5 FutureChallengesandSolutions 9 References 10 2 ConverterTopologies 13 2.1 Topologies 13 2.1.1 TheTwo-LevelConverter 13 2.1.2 TheNPCConverter 14 2.1.3 TheCHBConverter 15 2.2 PulseWidthModulationStrategies 16 2.2.1 Carrier-BasedStrategies 17 2.2.2 SVMStrategies 22 2.3 Modeling 27 References 28 3 DC-LinkCapacitorCurrentandSizinginNPCand CHBInverters 29 3.1 Introduction 29 3.2 InverterDC-LinkCapacitorSizing 30 3.3 AnalyticalDerivationofDC-LinkCapacitorCurrentRMSExpressions 32 vi Contents 3.3.1 NPCInverter 33 3.3.2 CHBInverter 36 3.4 AnalyticalDerivationofDC-LinkCapacitorCurrentHarmonics 37 3.4.1 NPCInverter 38 3.4.2 CHBInverter 39 3.5 NumericalDerivationofDC-LinkCapacitorCurrentRMSValueand VoltageRippleAmplitude 41 3.6 SimulationResults 42 3.7 Discussion 45 3.7.1 ComparisonofCapacitorSizeforthe NPCandCHBInverters 45 3.7.2 ComparisonofPresentedMethodsforAnalyzingDC-Link CapacitorCurrent 46 3.7.3 ExtensiontoHigher-LevelInverters 48 3.8 Conclusion 48 References 48 4 LossComparisonofTwo-andThree-LevelInverterTopologies 51 4.1 Introduction 51 4.2 SelectionofIGBT-DiodeModules 53 4.3 SwitchingLosses 54 4.3.1 SwitchingLossesintheTwo-LevelInverters 54 4.3.2 SwitchingLossesintheNPCInverter 57 4.3.3 SwitchingLossesintheCHBInverter 58 4.4 ConductionLosses 58 4.4.1 ConductionLossesintheTwo-LevelInverter 60 4.4.2 ConductionLossesintheNPCInverter 61 4.4.3 ConductionLossesintheCHBInverter 63 4.5 DC-LinkCapacitorRMSCurrent 65 4.6 Results 69 4.7 Conclusion 70 References 71 5 MinimizationofLow-FrequencyNeutral-PointVoltage OscillationsinNPCConverters 73 5.1 Introduction 73 5.2 NPCConverterModulationStrategies 74 5.3 MinimumNPRippleAchievablebyNVStrategies 77 5.3.1 LocallyAveragedNPCurrent 78 5.3.2 EffectofSwitchingConstraints 79 5.3.3 Zero-RippleRegion 81 5.3.4 ALowerBoundaryfortheNPVoltageRipple 81 5.4 ProposedBand-NVStrategies 83 Contents vii 5.4.1 CriterionUsedbyConventionalNVStrategies 83 5.4.2 ProposedCriterion 84 5.4.3 RegionsofOperation 85 5.4.4 Algorithm 88 5.4.5 SwitchingSequences–ConversiontoBand-NV 90 5.5 PerformanceofBand-NVStrategies 91 5.5.1 NPVoltageRipple 91 5.5.2 EffectiveSwitchingFrequency–OutputVoltageHarmonic Distortion 93 5.6 SimulationofBand-NVStrategies 94 5.7 HybridModulationStrategies 100 5.7.1 ProposedHybridStrategies 101 5.7.2 SimulationResults 102 5.8 Conclusions 106 References 107 6 DigitalControlofaThree-PhaseTwo-LevelGrid-Connected Inverter 109 6.1 Introduction 109 6.2 ControlStrategy 112 6.3 DigitalSamplingStrategy 113 6.4 EffectofTimeDelayonStability 115 6.5 CapacitorCurrentObserver 116 6.6 DesignofFeedbackControllers 119 6.7 SimulationResults 121 6.8 ExperimentalResults 123 6.9 Conclusions 127 References 128 7 DesignandControlofaGrid-ConnectedInterleavedInverter 131 7.1 Introduction 131 7.2 RippleCancellation 135 7.3 HardwareDesign 137 7.3.1 HardwareDesignGuidelines 138 7.3.2 ApplicationoftheDesignGuidelines 145 7.4 ControllerStructure 146 7.5 SystemAnalysis 149 7.5.1 EffectofPassiveDampingandGridImpedance 151 7.5.2 EffectofComputationalTimeDelay 151 7.5.3 GridDisturbanceRejection 154 7.6 ControllerDesign 154 7.7 SimulationandPracticalResults 158 7.8 Conclusions 167 viii Contents References 167 8 RepetitiveCurrentControlofanInterleavedGrid-Connected Inverter 171 8.1 Introduction 171 8.2 ProposedControllerandSystemModeling 172 8.3 SystemAnalysisandControllerDesign 175 8.4 SimulationResults 178 8.5 ExperimentalResults 179 8.6 Conclusions 182 References 182 9 LineInteractiveUPS 185 9.1 Introduction 185 9.2 SystemOverview 188 9.3 CoreController 192 9.3.1 VirtualImpedanceandGridHarmonicsRejection 193 9.4 PowerFlowController 195 9.4.1 DroopingControlEquations 195 9.4.2 SmallSignalAnalysis 196 9.4.3 StabilityAnalysisandDroopingCoefficientsSelection 200 9.5 DCLinkVoltageController 206 9.6 ExperimentalResults 209 9.7 Conclusions 217 References 218 10 MicrogridProtection 221 10.1 Introduction 221 10.2 KeyProtectionChallenges 221 10.2.1 FaultCurrentLevelModification 221 10.2.2 DeviceDiscrimination 223 10.2.3 ReductioninReachofImpedanceRelays 223 10.2.4 BidirectionalityandVoltageProfileChange 224 10.2.5 SympatheticTripping 224 10.2.6 Islanding 224 10.2.7 EffectonFeederReclosure 224 10.3 PossibleSolutionstoKeyProtectionChallenges 225 10.3.1 PossibleSolutionstoKeyProtectionChallengesforan IslandedMicrogridHavingIIDGUnits 225 10.4 CaseStudy 229 10.4.1 FaultLevelModification 231 10.4.2 BlindingofProtection 232 10.4.3 SympatheticTripping 233 Contents ix 10.4.4 ReductioninReachofDistanceRelay 233 10.4.5 Discussion 234 10.5 Conclusions 235 References 236 11 AnAdaptiveRelayingSchemeforFuseSaving 239 11.1 Introduction 239 11.1.1 PreventiveSolutionsProposedintheLiterature 240 11.1.2 RemedialSolutionsProposedintheLiterature 241 11.1.3 ContributionsoftheChapter 242 11.2 CaseStudy 242 11.3 SimulationResultsandDiscussion 245 11.4 FuseSavingStrategy 247 11.4.1 OptionsandConsiderationsfortheSelectionof I ofthe50Element 249 pickup 11.4.2 AdaptiveAlgorithm 251 11.5 HowReclosingWillBeApplied 252 11.6 Observations 255 11.7 Conclusions 257 References 257 AppendixA SVMfortheNPCConverter– MATLAB®-SimulinkModels 261 A.1 CalculationofDutyCyclesforNearestSpaceVectors 261 A.2 SymmetricModulationStrategy 262 A.3 MATLAB®-SimulinkModels 263 References 279 AppendixB DC-LinkCapacitorCurrentNumericalCalculation 281 Index 285 About the Authors Suleiman M. Sharkh obtained his BEng and PhD degrees in Electrical Engineering from the University of Southampton in 1990 and 1994, respectively. He is currently the Head of the Electro-Mechanical Research Group at the University of Southampton. He is also the Managing Director of HiT Systems Ltd, and a visit- ing Professor at the Beijing Institute of Technology and BeijingJiaotongUniversity. He has 20 years research experience in the field of electricalandelectromagneticsystems,includingelectric switches, power electronics, electrical machines, con- trol systems, and characterization and management of advancedbatteries.Todatehehaspublishedabout150publications.Hehasobtained research grant income of about £2M from the Research Councils and industry since 1998.Hehassupervised11PhDstudentstocompletionandiscurrentlysupervising5 PhDstudents.HeisanestablisheddoctoralexternalexaminerintheUKandabroad, includingEurope,China,andAustralia.Hisresearchhascontributedtothedevelop- mentofanumberofcommercialproducts,includingrimdrivenmarinethrusters(TSL Technology Ltd), down-hole submersible motors for drilling and pumping oil wells (TSLTechnologyLtd),sensorlessbrushlessDCmotorcontrollers(TSLTechnology), powerelectronicconvertersformicrogrids(BowmanPowerSystemsandTSLTech- nology), high-speed PM alternators for Rankine cycle and gas microturbine energy recovery systems (TSL Technology, Bowman Power Systems, and Freepower), and batterymanagementsystems(ReapSystemsLtd). HewasthewinnerofTheEngineerEnergyInnovationandTechnologyAwardthat was presented at the Royal Society London in October 2008 for his work on novel rimdrivenmarinethrustersandturbinegenerators,whichareproducedcommercially under licence by TSL Technology Ltd. He was also awarded the Faraday SPARKS award in 2002. He is a past committee member of the UK Magnetics Society, a memberoftheIETandaCharteredEngineer. xii AbouttheAuthors MohammadA.AbusarareceivedtheBEngdegreefrom BirzeitUniversity,Palestine,in2000,andthePhDdegree from the University of Southampton, UK, in 2004, both in electrical engineering. From 2003 to 2010, he was with Bowman Power Group, Southampton, UK, respon- sible for research and development of digital control of powerelectronicsfordistributedenergyresources,hybrid vehicles, and machines and drives. He is currently a SeniorLecturerinRenewableEnergyattheUniversityof Exeter,UK. GeorgiosI.OrfanoudakisreceivedhisMEnginElectri- calEngineeringandComputerSciencefromtheNational TechnicalUniversityofAthens(NTUA),Greece,in2007, andhisMScinSustainableEnergyTechnologiesfromthe UniversityofSouthampton,UK,in2008.Hethenjoined the Electro-Mechanical Research Group at the Univer- sity of Southampton and obtained his PhD in 2013. His research focused on the modulation and DC-link capaci- torsizingofthree-levelinverters.SinceOctober2012heis working as a Research Associate in a Knowledge Trans- fer Partnership (KTP) with the University of Southamp- ton and TSL technology Ltd., performing R&D work on inverters for motor drive applications. Dr Orfanoudakis is a member of the IEEE PowerElectronicsSociety. BabarHussainreceivedtheBScdegreeinelectricalengi- neering from the University of Engineering and Tech- nology, Taxila, Pakistan, in 1995 and the PhD degree in electrical engineering from the University of Southamp- ton, Southampton, UK, in 2011. He has more than 10 years experience in the electric power sector. His major research interests include protection of distribution net- workswithdistributedgeneration,powerquality,andcon- trolofgrid-connectedinverters.