ACSP · Analog Circuits And Signal Processing Yu Lin Hans Hegt Kostas Doris Arthur H.M. van Roermund Power-Efficient High-Speed Parallel-Sampling ADCs for Broadband Multi-carrier Systems Analog Circuits and Signal Processing Series editors Mohammed Ismail, Dublin, USA Mohamad Sawan, Montreal, Canada More information about this series at http://www.springer.com/series/7381 Yu Lin Hans Hegt Kostas Doris (cid:129) (cid:129) Arthur H.M. van Roermund fi Power-Ef cient High-Speed Parallel-Sampling ADCs for Broadband Multi-carrier Systems 123 YuLin KostasDoris NXPSemiconductors NXPSemiconductors Eindhoven Eindhoven TheNetherlands TheNetherlands Hans Hegt ArthurH.M. vanRoermund Department ofElectrical Engineering Department ofElectrical Engineering Eindhoven University of Technology Eindhoven University of Technology Eindhoven Eindhoven TheNetherlands TheNetherlands ISSN 1872-082X ISSN 2197-1854 (electronic) Analog CircuitsandSignal Processing ISBN978-3-319-17679-6 ISBN978-3-319-17680-2 (eBook) DOI 10.1007/978-3-319-17680-2 LibraryofCongressControlNumber:2015937536 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Book Aim and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Enhancing ADC Performance by Exploiting Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Introduction to Analog-to-Digital Converters . . . . . . . . . . . . . . . 5 2.2 ADC Performance Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Conversion Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.4 ADC Figure-of-Merit . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 ADC Performance Limitations and Trends. . . . . . . . . . . . . . . . . 11 2.4 ADC Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Exploiting Signal Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Parallel-Sampling ADC Architecture for Multi-carrier Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1 Introduction to Multi-carrier Transmission. . . . . . . . . . . . . . . . . 23 3.2 Statistical Amplitude Properties of Multi-carrier Signals . . . . . . . 25 3.3 ADC Requirements for Multi-carrier Signals . . . . . . . . . . . . . . . 28 3.4 Power Reduction Techniques for Thermal-Noise Limited ADCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5 A Parallel-Sampling ADC Architecture. . . . . . . . . . . . . . . . . . . 36 3.5.1 Principle of the Parallel-Sampling ADC Architecture . . . . 37 3.5.2 Advantages of the Parallel-Sampling Architecture. . . . . . . 39 3.5.3 Impact of Mismatch Between Signal Paths . . . . . . . . . . . 43 v vi Contents 3.6 Implementation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4 Implementations of the Parallel-Sampling ADC Architecture . . . . . 51 4.1 Parallel-Sampling Architecture Applied to a Pipeline ADC . . . . . 52 4.1.1 Pipeline ADCs Architecture. . . . . . . . . . . . . . . . . . . . . . 52 4.1.2 A Parallel-Sampling First Stage for a Pipeline ADC. . . . . 53 4.1.3 Implementation and Operation of the First Stage . . . . . . . 56 4.1.4 Simulation and Comparison. . . . . . . . . . . . . . . . . . . . . . 60 4.2 Parallel-Sampling Architecture Applied to a TI SAR ADC . . . . . 64 4.2.1 A Hierarchical TI-SAR ADC Architecture. . . . . . . . . . . . 64 4.2.2 A Parallel-Sampling Frontend Stage for a TI-SAR ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.3 Implementation and Operation. . . . . . . . . . . . . . . . . . . . 67 4.2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3 Design of a 1 GS/s 11-b Parallel-Sampling ADC for Broadband Multi-Carrier Systems . . . . . . . . . . . . . . . . . . . . 73 4.3.1 Architecture and Operation Overview. . . . . . . . . . . . . . . 74 4.3.2 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.3 Layout and Test-Chip Implementation. . . . . . . . . . . . . . . 83 4.3.4 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3.6 Performance Summary . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.3.7 Comparison with State-of-the-Art. . . . . . . . . . . . . . . . . . 95 4.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 Conclusions and Recommendations. . . . . . . . . . . . . . . . . . . . . . . . 103 5.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2 Recommendations for Future Research . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Appendix: A Dynamic Latched Comparator for Low Supply Voltage Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Symbols and Abbreviations A Scaling factor ADC Analog-to-digital converter ADE Cadence analog design environment ADSL Asymmetric digital subscriber line AMP Amplifier AWG Arbitrary waveform generator BER Bit error rate C Capacitance (F) CICC IEEE Custom Integrated Circuits Conference CMOS Complementary metal oxide semiconductor CR Clipping ratio CS Current source CS-DAC Current steering digital-to-analog converter D Auxiliary path data output aux D Digital data output out D(n) Digital data symbol DAC Digtial-to-analog converter DFT Discrete Fourier transform DNL Differential non-linearity (LSB) DOCSIS Data over cable service interface specification DUT Device under test E{∙} Expectation ECG Electrocardiography ENOB Effective number of bits (bit) ERBW Effective resolution bandwidth (Hz) ESSCIRC IEEE European Solid State Circuits Conference f(x) Probability density function F(x) Distribution function f Carrier frequency c f Subcarrier spacing cs FE Front end vii viii SymbolsandAbbreviations FFT Fast Fourier transform FinFET Fin-shaped field-effect transistor FOM Figure of merit FS Full scale amplitude measured by a single sinusoid (V) f Sampling rate (Hz) s g(t) Pulse function GSM Global system for mobile communications GS/s Gigahertz sample per second HD Harmonic distortion HVQFN Heatsink very-thin quad flat-pack no-leads I/O Input/output I2C Inter-integrated circuit IC Integrated circuit IEEE Institute of Electrical and Electronics Engineers IFFT Inverse fast Fourier transform IMD Inter-modulation distortion INL Integral nonlinearity (LSB) ISSCC IEEE international Solid-State Circuits Conference k Boltzmann’s constant (Joules/Kelvin) L Clipping level of an ADC (V) clip LSB Least significant bit LTE Long-Term Evolution MC-CDMA Multi-carrier code division multiple access MDAC Multiplying digital-to-analog converter MUX Multiplexer NPR Noise power ratio os Offset voltage (V) OFDM Orthogonal frequency division multiplexing transmission PAPR Peak-to-average power ratio P Power back-off value (dB) backoff P Clipping distortion power (W) c PCB Printed circuit board Pdf Probability density function P ADC full scale signal power measured with a sinusoid (W) fs P Noise power (W) n P Signal power (W) s PSD Power spectral density (W/Hz) Q(x) Quantization function QADC Quarter ADC QAM Quadrature amplitude modulation R Signal range processed by the ADC ADC RMS Root mean square SAR Successive approximation register SC Switched capacitor SCDR Signal to clipping distortion ratio SymbolsandAbbreviations ix SelMUX Path selection multiplexer SFDR Spurious free dynamic range SHA Sample-and-hold-amplifier SNCDR Signal to noise and clipping distortion ratio SNDR Signal to noise and distortion ratio SNR Signal-to-noise ratio SoC System on chip SOI Silicon on insulator SQNR Signal to quantization noise ratio STNR Signal to thermal noise ratio T/H Track and hold THD Total harmonic distortion TI-ADC Time interleaving ADC T Data block duration (sec) b T Sampling period (sec) s USB Universal serial bus V Auxiliary path input signal (V) aux V Bias voltage (V) b V Clock voltage (V) clk V Common mode voltage (V) cm V Supply voltage (V) dd V Input voltage (V) in V Main path input signal (V) main V RMS noise voltage (V) n.RMS V Output voltage (V) out V Peak-to-peak differential voltage (V) ppd V Reference voltage (V) r V Output residue signal voltage (V) res V RMS signal voltage (V) s.RMS V Threshold voltage (V) th VLSI Symposia on VLSI Technology and Circuits WiMAX Worldwide interoperability for microwave access WLAN Wireless local area network WPAN Wireless personal area network Δt Timing skew (sec) Δ ADC least significant bit size (V) LSB η Voltage efficiency vol η Current efficiency vol Φ Clock signal
Description: