Table Of ContentPower Control and Resource Allocation
for QoS-Constrained Wireless Networks
Ziqiang Feng
Computer Laboratory
University of Cambridge
This dissertation is submitted for the degree of
Doctor of Philosophy
Churchill College October 2017
Power Control and Resource Allocation for
QoS-Constrained Wireless Networks
Ziqiang Feng
Developments such as machine-to-machine communications and multimedia services are
placing growing demands on high-speed reliable transmissions and limited wireless spec-
trum resources. Although multiple-input multiple-output (MIMO) systems have shown the
ability to provide reliable transmissions in fading channels, it is not practical for single-
antenna devices to support MIMO system due to cost and hardware limitations. Cooper-
ative communication allows single-antenna devices to share their spectrum resources and
form a virtual MIMO system where their quality of service (QoS) may be improved via
cooperation. Most cooperative communication solutions are based on fixed spectrum ac-
cessschemesandthuscannotfurtherimprovespectrumefficiency. Inordertosupportmore
usersintheexistingspectrum,weconsiderdynamicspectrumaccessschemesandcognitive
radiotechniquesinthisdissertation.
Ourworkincludesthemodelling,characterizationandoptimizationofQoS-constrained
cooperativenetworksandcognitiveradionetworks. QoSconstraintssuchasdelayanddata
rate are modelled. To solve power control and channel resource allocation problems, dy-
namic power control, matching theory and multi-armed bandit algorithms are employed in
our investigations. In this dissertation, we first consider a cluster-based cooperative wire-
less network utilizing a centralized cooperation model. The dynamic power control and
optimization problem is analyzed in this scenario. We then consider a cooperative cogni-
tive radio network utilizing an opportunistic spectrum access model. Distributed spectrum
access algorithms are proposed to help secondary users utilize vacant channels of primary
usersinordertooptimizethetotalutilityofthenetwork. Finally,anoncooperativecognitive
radio network utilizing the opportunistic spectrum access model is analyzed. In this model,
primary users do not communicate with secondary users. Therefore, secondary users are
required to find vacant channels on which to transmit. Multi-armed bandit algorithms are
proposedtohelpsecondaryuserspredicttheavailabilityoflicensedchannels.
In summary, in this dissertation we consider both cooperative communication networks
and cognitive radio networks with QoS constraints. Efficient power control and channel
resourceallocationschemeshavebeenproposedforoptimizationproblemsindifferentsce-
narios.
Declaration
I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This dis-
sertation contains fewer than 60,000 words including appendices, bibliography, footnotes,
tablesandequationsandhasfewerthan150figures.
ZiqiangFeng
October2017
Acknowledgements
Firstandforemost,Iwouldliketothankmysupervisor,DrIanWassell,forhiskindsupport
andguidancethroughoutmyPhDstudy. Hispatience,enthusiasmandencouragementhave
been a source of great inspiration to me. I also thank him for giving me the freedom to
pursuemyownresearchinterestswhilekeepingmeontherighttrack. Thisworkwouldnot
havebeenpossiblewithouthisinvaluableadvice.
My sincere thanks go to my friends and labmates that have made my life memorable
andenjoyableatCambridge. ThankstoHongfeiLi,ShaoranHu,XiaomingYuandBingyan
Yang,forthewonderfultimeandhappinessweshared. ThankstoChaoGao,YuWang,Xing
Ding,YangLiu,DavidTurnerandOliverChick,fortheirkindhelpandvaluablediscussions
intheresearchgroup.
I am also grateful to the Cambridge Overseas Trust, the China Scholarship Council and
theComputerLaboratory,forsponsoringmyresearchinthepastfouryears.
Finally,Iamgreatlyindebtedtomyfamily,whohavealwayssupportedmeandbelieved
in me. I would like to thank my mom and dad, for their love and encouragement in my life
sincethedayIwasborn. Iwouldliketothankmywife,Menglin,forhergreatsacrificeand
supportduringmyPhD.Iwouldn’thavemadeitthisfarifithadn’tbeenforher.
Table of contents
Listoffigures 13
Listoftables 15
Listofacronyms 17
1 Introduction 21
1.1 CooperativeCommunication . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 CognitiveRadioNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3 MainContributionsandDissertationOutline . . . . . . . . . . . . . . . . . 23
2 Background 27
2.1 WirelessChannelCapacity . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.1 SISOChannelCapacity . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.2 MIMOChannelCapacity . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 DelayAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1 QueueingTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 DelayModelwithQueueingtheory . . . . . . . . . . . . . . . . . 36
2.3 QoSConstraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 PowerControlAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.1 PowerConsumptionAnalysis . . . . . . . . . . . . . . . . . . . . 37
2.4.2 PowerControlMethods . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 ResourceAllocationMethods . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.1 TheAssignmentProblem . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.2 TheHungarianAlgorithm . . . . . . . . . . . . . . . . . . . . . . 42
2.5.3 TheMatchingAlgorithm . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10 Tableofcontents
3 Dynamic Power Control and Optimization for QoS-Constrained Wireless Net-
works 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Multi-HopQoSConstraint . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 DynamicPowerControlandOptimization . . . . . . . . . . . . . . . . . . 54
3.4.1 DynamicPowerControlAlgorithm . . . . . . . . . . . . . . . . . 55
3.4.2 OutageCapacityApproximation . . . . . . . . . . . . . . . . . . . 56
3.5 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4 Competitive Distributed Spectrum Access for QoS-Constrained Wireless Net-
works 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 SystemModelandProblemFormulation . . . . . . . . . . . . . . . . . . . 70
4.2.1 QoSConstraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 UtilityFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 OptimalSolutionandMatchingTheory . . . . . . . . . . . . . . . . . . . 73
4.3.1 OptimalSolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 MatchingDefinition . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 StableMatching . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 CompetitiveDistributedSpectrumAccess . . . . . . . . . . . . . . . . . . 74
4.4.1 DistributedSpectrumAccessScheme . . . . . . . . . . . . . . . . 74
4.4.2 DistributedMatchingAlgorithm . . . . . . . . . . . . . . . . . . . 76
4.4.3 FastDistributedSpectrumAccessScheme . . . . . . . . . . . . . . 78
4.5 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5 Joint Channel Sensing and Power Control for QoS-Constrained Wireless Net-
works 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 SystemModelandProblemFormulation . . . . . . . . . . . . . . . . . . . 89
5.2.1 ChannelSensingwithAvailabilityConstraints . . . . . . . . . . . 91
5.2.2 PowerControlwithRateConstraints . . . . . . . . . . . . . . . . 93
5.3 ProbablyApproximatelyCorrectChannelSensingAlgorithms . . . . . . . 94
5.3.1 PassiveRejectionAlgorithm . . . . . . . . . . . . . . . . . . . . . 95
5.3.2 ActiveEliminationAlgorithm . . . . . . . . . . . . . . . . . . . . 97
Description:3 Dynamic Power Control and Optimization for QoS-Constrained Wireless Net- works. 47. 3.1 Introduction . algorithms for QoS-constrained wireless networks for cooperative communication and cog- nitive radio network throughput under the QoS constraints, we propose a distributed channel allo-.