ebook img

Post-Newtonian Hydrodynamics: Theory and Applications PDF

412 Pages·2022·2.98 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Post-Newtonian Hydrodynamics: Theory and Applications

Post-Newtonian Hydrodynamics Post-Newtonian Hydrodynamics : Theory and Applications By Gilberto Medeiros Kremer Post-Newtonian Hydrodynamics: Theory and Applications By Gilberto Medeiros Kremer Departamento de Física Universidade Federal do Paraná Curitiba, Brazil E-mail: [email protected] This book first published 2022 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2022 by Gilberto Medeiros Kremer All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-7969-7 ISBN (13): 978-1-5275-7969-9 To Maria Rachel Contents PREFACE xiii 1 THE BOLTZMANN EQUATION: AN OVERVIEW 1 1.1 Non-relativistic Boltzmann equation . . . . . . . 2 1.2 Boltzmann equation in special relativity . . . . . 7 1.3 Boltzmann equation in gravitational fields . . . . . . . . . . . . . . . . . 14 2 FIRST POST-NEWTONIAN APPROXIMATION 27 2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . 28 2.2 The first post-Newtonian approximation . . . . . 31 2.3 The solution of Einstein’s field equations . . . . . . . . . . . . . . . . . . . . . . 37 2.3.1 The Weinberg method . . . . . . . . . . . 37 2.3.2 Explicit expressions for the components . 42 vii 2.3.3 The Chandrasekhar method . . . . . . . . 47 2.4 Hydrodynamic equations for an Eulerian fluid . . . . . . . . . . . . . . . . . . . . 52 2.5 Brans-Dicke post-Newtonian approximation . . . . . . . . . . . . . . . . . . . 58 2.5.1 Brans-Dicke theory . . . . . . . . . . . . . 58 2.5.2 Post-Newtonian Brans-Dicke theory . . . 66 2.5.3 Hydrodynamic equations for an Eulerian fluid . . . . . . . . . . . . . . . 75 2.6 Non-perfect fluid hydrodynamic equations . . . . . . . . . . . . . . . . . . . . . . 78 2.7 The gravitational potentials . . . . . . . . . . . . 86 2.8 The conservation laws . . . . . . . . . . . . . . . 92 2.9 The post-Newtonian virial theorem . . . . . . . . . . . . . . . . . . . . . . . 104 3 SECOND POST-NEWTONIAN APPROXIMA- TION 111 3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . 112 3.2 Equation for determination Ψ . . . . . . . . . . 115 ij 3.3 Equation for determination Ψ . . . . . . . . . . 120 0i 3.4 Equation for determination Ψ . . . . . . . . . . 122 00 3.5 A gauge choice . . . . . . . . . . . . . . . . . . . 124 3.6 Hydrodynamic equations for an Eulerian fluid . . . . . . . . . . . . . . . . . . . . 125 3.7 Conservation laws in general relativity . . . . . . 138 3.7.1 Energy-momentum pseudo-tensor of the gravitational field . . . . . . . . . . . . . . 140 viii 3.7.2 The total linear momentum density con- servation . . . . . . . . . . . . . . . . . . 145 3.7.3 The total energy density conservation . . 148 4 POST-NEWTONIAN KINETIC THEORY 163 4.1 First post-Newtonian approximation . . . . . . . 164 4.1.1 Post-Newtonian Boltzmann equation . . . 164 4.1.2 Post-Newtonian Maxwell-Ju¨ttner distribution function . . . . . . . . . . . . 167 4.1.3 Post-Newtonian macroscopic fields . . . . 169 4.1.4 Post-Newtonian transfer and Eulerian hydrodynamic equations . . . . . . . . . 173 4.2 Second post-Newtonian approximation . . . . . . . . . . . . . . . . . . . 176 4.2.1 Post-Newtonian Boltzmann equation . . . 177 4.2.2 Post-Newtonian Maxwell-Ju¨ttner distribution function . . . . . . . . . . . . 179 4.2.3 Post-Newtonian macroscopic fields . . . . 181 4.2.4 Post-Newtonian hydrodynamic equations . . . . . . . . . . . . . . . . . . 185 4.3 Post-Newtonian Jeans equations . . . . . . . . . 190 4.3.1 Stationary and spherically symmetrical self-gravitating systems . . . . . . . . . . 191 4.3.2 Stationary and axisymmetrical self-gravitating systems . . . . . . . . . . 194 5 STELLAR STRUCTURE MODELS 203 5.1 The polytropic equation of state . . . . . . . . . 204 5.2 Stellar mean molecular weight . . . . . . . . . . . 207 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.