Tiago Stegun Vaquero Post-Design Analysis for AI Planning Applications Thesis presented at Polytechnic School of the University of Sa˜o Paulo for the degree ofDoctorofMechatronicsEngineering. Sa˜oPaulo 2010 Tiago Stegun Vaquero Post-Design Analysis for AI Planning Applications Thesis presented at Polytechnic School of the University of Sa˜o Paulo for the degree ofDoctorofMechatronicsEngineering. Areaofconcentration: Mechanical Control and Automation Engineering Supervisor: Prof. Dr. Jose´ Reinaldo Silva Co-supervisor: Prof. Dr. J. Christopher Beck Sa˜oPaulo 2010 FichaCatalogra´fica Vaquero,TiagoStegun Post-Design Analysis for AI Planning Applications. / T.S. Vaquero. – Sa˜oPaulo,2010. 111p. Tese(Doutorado) —EscolaPolite´cnicadaUniversidadedeSa˜oPaulo. DepartamentodeEngenhariaMecatroˆnicaedeSistemasMecaˆnicos. 1. Mecatroˆnica 2. Inteligeˆncia artificial (Planejamento) 3. Representac¸a˜o de conhecimento 4. Design I. Universidade de Sa˜o Paulo. Escola Polite´cnica. Departamento de Engenharia Mecatroˆnica e de Sis- temasMecaˆnicos. II.t. Acknowledgements First and above all, I praise God, the almighty for providing me this opportunity and granting me the capability to proceed successfully. This thesis appears in its current formduetotheguidanceandcontribution,bothdirectlyandindirectly,ofseveralpeo- ple. Iwouldthereforeliketooffermysincerethankstoallofthem. I would firstly like to thank my supervisors, Professor Jose´ Reinaldo Silva and ProfessorJ.ChristopherBeck,forbeinggreatadvisorsandrolemodels,forallofyour suggestions and ideas, and for taking the time to explain and discuss all aspects of researchtome. Thankstoallmycolleaguesinthefollowinglabs: DesignLabattheUniversityof Sa˜o Paulo, TIDEL at the University of Toronto, and IAAA at the University Center of FEI–youhaveallhelpedmeatsomepoint. Thankstomyparents,GilbertoandSoˆnia,foryearsofsupportandlove. Lastandmost,thankstomylovelysweetwifePatr´ıciaforallherloveandsupport, andforhergreatpatienceandunderstandings. Abstract Sincetheendofthe1990stherehasbeenanincreasinginterestintheapplicationofAI planning techniques to solve real-life problems. In addition to characteristics of aca- demic problems, such as the need to reason about actions, real-life problems require detailed knowledge elicitation, engineering, and management. A systematic design processinwhichKnowledgeandRequirementsEngineeringtechniquesandtoolsplay a fundamental role is necessary in such applications. Research on Knowledge En- gineering for planning and scheduling has created tools and techniques to support the designprocessofplanningdomainmodels. However,giventhenaturalincompleteness of the knowledge, practical experience in real applications such as space exploration has shown that, even with a disciplined process of design, requirements from differ- ent viewpoints (e.g. stakeholders, experts, users) still emerge after plan generation, analysisandexecution. The central thesis of this dissertation is that an post-design analysis phase in the development of AI planning applications leads to richer knowledge models and, con- sequently, to high-performance and high-quality plans. In this dissertation, we inves- tigate how hidden knowledge and requirements can be acquired and re-used during a plan analysis phase that follows model design and how they affect planning per- formance. We describe a post-design framework called postDAM that combines (1) a knowledge engineering tool for requirements acquisition and plan evaluation, (2) a virtualprototypingenvironmentfortheanalysisandsimulationofplans,(3)adatabase systemforstoringplanevaluations,and(4)anontologicalreasoningsystemforknowl- edgere-useanddiscovery. Our framework demonstrates that post-design analysis supports the discovery of missing requirements and guides the model refinement cycle. We present three case studiesusingbenchmarkdomainsandeightstate-of-the-artplanners. Ourresultsdemon- stratethatsignificantimprovementsinplanqualityandanincreaseinplanningspeedof uptothreeordersofmagnitudecanbeachievedthroughacarefulpost-designprocess. We also demonstrate that rationales captured during plan evaluations from users can be useful and reusable in further plan evaluations and in new application designs. We argue that such a post-design process is critical for deployment of planning technol- ogyinreal-worldapplications. Toourknowledge,thisisthefirstworkthatinvestigate post-designanalysisforAIplanningapplications. Resumo Desdeofinaldade´cadade1990existeuminteressecrescentenaaplicac¸a˜odete´cnicas deplanejamentoautoma´ticoemIApararesolverproblemasreaisdeengenharia. Ale´m das caracter´ısticas dos problemas acadeˆmicos, tais como a necessidade de raciocinar sobreasac¸o˜es,problemasreaisrequeremelicitac¸a˜o,engenhariaegerenciamentodetal- hado do conhecimento do dom´ınio. Para tais aplicac¸o˜es reais, um processo de design sistema´tico e´ necessa´rio onde as ferramentas de Engenharia do Conhecimento e de Requisitons teˆm um papel fundamental. Esforc¸os acadeˆmicos recentes na a´rea da En- genharia do Conhecimento em planejamento automa´tico veˆm desenvolvido ferramen- tas e te´cnicas de apoio ao processo de design de modelos do conhecimento. Pore´m, dadaanaturalincompletudedoconhecimento,experieˆnciapra´ticaemaplicac¸o˜esreais, comoporexemploexplorac¸a˜odoespac¸o,temmostradoque,mesmocomumprocesso disciplinado de design, requisitos de pontos de vista diferente (por exemplo, especial- istas,usua´riosepatrocinadores)aindasurgirgemapo´saana´lise,gerac¸a˜oeexecuc¸a˜ode planos. A tese central deste texto e´ que uma fase de ana´lise de po´s-design para o desen- volvimento de applicac¸o˜es de planejamento em IA resulta em modelos do conheci- mento mais ricos e, consequ¨entemente, aumenta a qualidade dos planos gerados e a performance dos planejadores automa´ticos. Neste texto, no´s investigamos como os conhecimentos e requisitos ocultos podem ser adquiridos e reutilizados durante a fase de ana´lise de plans (posterior ao design do modelo) e como estes conhecimentos afe- tam o desempenho do processo de planejamento automa´tico. O texto descreve um frameworkdepost-designchamadopostDAM quecombina(1)umaferramentadeen- genharia de conhecimento para a aquisic¸a˜o de requisitos e avaliac¸a˜o do plano, (2) um ambientedeprototipagemvirtualparaaana´liseesimulac¸a˜odeplanos,(3)umsistema de banco de dados para armazenamento de avaliac¸o˜es de planos, e (4) um sistema de racionc´ınioontolo´gicoparaore-usoedescobertadeconhecimentosobreodom´ınio. Com o framework postDAM demostramos que a ana´lise de po´s-design auxilia a descoberta da requisitos ocultos e orienta o ciclo de refinamento do modelo. Este trabalho apresenta treˆs estudos de caso com dom´ınios conhecidos na literatura e oito planejadores do estado da arte. Nossos resultados demonstram que melhorias signi- ficativas na qualidade do plano e um aumento na velocidade dos planejadores de ate´ treˆs ordens de grandeza pode ser alcanc¸ada atrave´s de um processo disciplinado e cuidadose de po´s-design. No´s demonstramos tambe´m que rationales provenientes dos usua´rioscapturadosduranteasavaliac¸o˜esdeplanospodemseru´teisereutiliza´veisem novas avaliac¸o˜es de plano e em novos projetos. No´s argumentamos que esse processo de po´s-design e´ fundamental para a implantac¸a˜o da tecnologia de planejamento au- toma´tico em aplicac¸o˜es do mundo real. Ate´ onde sabemos, este e´ o primeiro trabalho que investiga a ana´lise de po´s-design em aplicac¸o˜es de planejamento automa´tico da IA.
Description: