ebook img

Positioning Algorithms for Surveillance Using Unmanned Aerial Vehicles PDF

159 Pages·2011·2.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Positioning Algorithms for Surveillance Using Unmanned Aerial Vehicles

Link¨opingStudiesinScienceandTechnology ThesisNo. 1476 Positioning Algorithms for Surveillance Using Unmanned Aerial Vehicles by Per-Magnus Olsson SubmittedtoLink¨opingInstituteofTechnologyatLink¨opingUniversityinpartial fulfilmentoftherequirementsfordegreeofLicentiateofEngineering DepartmentofComputerandInformationScience Link¨opinguniversitet SE-58183Link¨oping,Sweden Link¨oping2011 ISBN 978-91-7393-200-4, ISSN 0280–7971 Printed by LiU-Tryck, 2011 Copyright ' Per-Magnus Olsson 2011 Electronic version available at : http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-66060 Positioning Algorithms for Surveillance Using Unmanned Aerial Vehicles by Per-MagnusOlsson April2011 ISBN978-91-7393-200-4 Link¨opingStudiesinScienceandTechnology ThesisNo. 1476 ISSN0280–7971 LiU–Tek–Lic–2011:15 ABSTRACT Surveillanceisanimportantapplicationforunmannedaerialvehicles(UAVs). Thesensed informationoftenhashighpriorityanditmustbemadeavailabletohumanoperatorsas quickly as possible. Due to obstacles and limited communication range, it is not always possibletotransmittheinformationdirectlytothebasestation. Inthiscase,otherUAVs canformarelaychainbetweenthesurveillanceUAVandthebasestation. Determining suitablepositionsforsuchUAVsisacomplexoptimizationprobleminandofitself,and ismadeevenmoredifficultbycommunicationandsurveillanceconstraints. TosolvedifferentvariationsoffindingpositionsforUAVsforsurveillanceofonetarget, two new algorithms have been developed. One of the algorithms is developed especially forfindingasetofrelaychainsofferingdifferenttrade-offsbetweenthenumberofUAVs andthequalityofthechain. Theotheralgorithmistailoredtowardsfindingthehighest qualitychainpossible,givenalimitednumberofavailableUAVs. Finding the optimal positions for surveillance of several targets is more difficult. A study has been performed, in order to determine how the problems of interest can be solved. Itturnsoutthatveryfewoftheexistingalgorithmscanbeusedduetothechar- acteristics of our specific problem. For this reason, an algorithm for quickly calculating positionsforsurveillanceofmultipletargetshasbeendeveloped. Thisenablescalculation of an initial chain that is immediately made available to the user, and the chain is then incrementallyoptimizedaccordingtotheuser’sdesire. ThisworkhasbeensupportedbyCUGS(theSwedishNationalGraduateSchoolinCom- puter Science), LinkLab (www.linklab.se), the Swedish National Aeronautics Research ProgramNFFP04–S4203andNFFP05–01263,theELLIITExcellenceCenteratLinko¨ping- Lund for Information Technology, the Swedish Foundation for Strategic Research (SSF) Strategic Research Center MOVIII, the Center for Industrial Information Technology CENIIT(grantnumber06.09)andtheLinnaeusCenterforControl,Autonomy,Decision- making in Complex Systems (CADICS), funded by the Swedish Research Council (VR). DepartmentofComputerandInformationScience Link¨opinguniversitet SE-58183Link¨oping,Sweden Acknowledgements This thesis would not have been possible without the support of co-workers and friends. Especially I would like to thank: Mysupervisors, professorPatrickDohertyandassociateprofessorJonas Kvarnstr¨om for guidance in research as well as in writing of this thesis. My co-researchers Kaj Holmberg and Oleg Burdakov for many valuable discussions. ThecolleaguesatAIICSandespeciallyOlovAndersson, FredrikHeintz, David Land´en, Martin Magnusson and Piotr Rudol for spending time read- ing this thesis as well as earlier papers. Anne Moe for guiding me through the bureaucratic maze of graduate studies. Otherfriends,toonumeroustomentionbyname,forencouragementand inspiration. Linda for being the world’s best girlfriend. Contents 1 Introduction 1 1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Related Work 7 2.1 UAVs As Relays . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Single Target . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Multiple Targets . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Area Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.6 Ad-hoc Networks and Wireless Sensor Networks. . . . . . . . 12 3 The Relay Positioning Problems 15 3.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Definitions of the Single Target Relay Problems . . . . . . . . 16 3.3 Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.1 Transmission Quality. . . . . . . . . . . . . . . . . . . 19 3.3.2 Position Visibility . . . . . . . . . . . . . . . . . . . . 20 3.3.3 Minimum Free Angle Between Positions . . . . . . . . 21 3.3.4 Minimum Distance to Obstacles . . . . . . . . . . . . 23 3.3.5 Surveillance Cost Functions . . . . . . . . . . . . . . . 23 3.4 Reachability Functions . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Problem Properties . . . . . . . . . . . . . . . . . . . . . . . . 25 3.6 Continuous Solution Methods . . . . . . . . . . . . . . . . . . 27 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Environment Representation and Discretization 31 4.1 Discretization and Graph Creation . . . . . . . . . . . . . . . 31 4.2 Fixed-Size Grids . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Octrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ix 4.4 Expanded Geometry Graphs . . . . . . . . . . . . . . . . . . 35 4.5 Voronoi Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 37 4.6 Discretization Methods Used in Motion Planning . . . . . . . 38 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Relay Positioning Algorithms for Single Target Problems 41 5.1 Existing Algorithms for the STR-ParetoLimited Problem . 42 5.2 A New Label-Correcting Algorithm . . . . . . . . . . . . . . . 44 5.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 44 5.2.2 Algorithm Details . . . . . . . . . . . . . . . . . . . . 46 5.2.3 Correctness Proof . . . . . . . . . . . . . . . . . . . . 50 5.2.4 Time Complexity . . . . . . . . . . . . . . . . . . . . . 52 5.2.5 Improved Preprocessing . . . . . . . . . . . . . . . . . 52 5.2.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3 A New Dual Ascent Algorithm . . . . . . . . . . . . . . . . . 54 5.3.1 Algorithm Details . . . . . . . . . . . . . . . . . . . . 55 5.3.2 Theoretical Properties . . . . . . . . . . . . . . . . . . 57 5.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.4 Performance Improvements . . . . . . . . . . . . . . . 60 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6 Relay Positioning for Multiple Targets 65 6.1 Definition of the Multiple Target Relay Problems . . . . . . . 65 6.2 Relation to Steiner Tree Problems . . . . . . . . . . . . . . . 67 6.2.1 Continuous Steiner Trees . . . . . . . . . . . . . . . . 67 6.2.2 Discrete Steiner Trees . . . . . . . . . . . . . . . . . . 68 6.3 Adapting the Cheapest Path Heuristic . . . . . . . . . . . . . 78 6.3.1 Theoretical Properties . . . . . . . . . . . . . . . . . . 80 6.3.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . 81 6.4 Calculating Pareto-optimal Relay Trees For Two Targets. . . 83 6.4.1 Determining the Set of Pareto-optimal Relay Trees . . 85 6.4.2 Duplicate Edges in the Relay Tree . . . . . . . . . . . 86 6.5 Improving Relay Trees . . . . . . . . . . . . . . . . . . . . . . 87 6.5.1 Reduced Trees . . . . . . . . . . . . . . . . . . . . . . 89 6.5.2 Choosing Subtrees for Optimization . . . . . . . . . . 89 6.5.3 Different Tree Structures . . . . . . . . . . . . . . . . 94 6.5.4 Collisions Between Trees . . . . . . . . . . . . . . . . . 95 6.5.5 Algorithm Details . . . . . . . . . . . . . . . . . . . . 97 6.5.6 Time Complexity . . . . . . . . . . . . . . . . . . . . . 99 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7 Implementation and Experimental Results 103 7.1 Software Architecture . . . . . . . . . . . . . . . . . . . . . . 103 7.2 Problem Setup for Empirical Testing . . . . . . . . . . . . . . 107 7.3 Pareto-Optimal Relay Chains . . . . . . . . . . . . . . . . . . 110 7.4 Optimal Chains Using At Most M UAVs . . . . . . . . . . . 114 7.5 Relay Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8 Discussion 127 8.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 128

Description:
suitable positions for such UAVs is a complex optimization problem in and of itself, and .. to and from such an altitude might require significant transmission power, Algorithms for finding trajectories are not part of this thesis for example be flight time, fuel consumption or visibility A grid c
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.