Link¨opingStudiesinScienceandTechnology ThesisNo. 1476 Positioning Algorithms for Surveillance Using Unmanned Aerial Vehicles by Per-Magnus Olsson SubmittedtoLink¨opingInstituteofTechnologyatLink¨opingUniversityinpartial fulfilmentoftherequirementsfordegreeofLicentiateofEngineering DepartmentofComputerandInformationScience Link¨opinguniversitet SE-58183Link¨oping,Sweden Link¨oping2011 ISBN 978-91-7393-200-4, ISSN 0280–7971 Printed by LiU-Tryck, 2011 Copyright ' Per-Magnus Olsson 2011 Electronic version available at : http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-66060 Positioning Algorithms for Surveillance Using Unmanned Aerial Vehicles by Per-MagnusOlsson April2011 ISBN978-91-7393-200-4 Link¨opingStudiesinScienceandTechnology ThesisNo. 1476 ISSN0280–7971 LiU–Tek–Lic–2011:15 ABSTRACT Surveillanceisanimportantapplicationforunmannedaerialvehicles(UAVs). Thesensed informationoftenhashighpriorityanditmustbemadeavailabletohumanoperatorsas quickly as possible. Due to obstacles and limited communication range, it is not always possibletotransmittheinformationdirectlytothebasestation. Inthiscase,otherUAVs canformarelaychainbetweenthesurveillanceUAVandthebasestation. Determining suitablepositionsforsuchUAVsisacomplexoptimizationprobleminandofitself,and ismadeevenmoredifficultbycommunicationandsurveillanceconstraints. TosolvedifferentvariationsoffindingpositionsforUAVsforsurveillanceofonetarget, two new algorithms have been developed. One of the algorithms is developed especially forfindingasetofrelaychainsofferingdifferenttrade-offsbetweenthenumberofUAVs andthequalityofthechain. Theotheralgorithmistailoredtowardsfindingthehighest qualitychainpossible,givenalimitednumberofavailableUAVs. Finding the optimal positions for surveillance of several targets is more difficult. A study has been performed, in order to determine how the problems of interest can be solved. Itturnsoutthatveryfewoftheexistingalgorithmscanbeusedduetothechar- acteristics of our specific problem. For this reason, an algorithm for quickly calculating positionsforsurveillanceofmultipletargetshasbeendeveloped. Thisenablescalculation of an initial chain that is immediately made available to the user, and the chain is then incrementallyoptimizedaccordingtotheuser’sdesire. ThisworkhasbeensupportedbyCUGS(theSwedishNationalGraduateSchoolinCom- puter Science), LinkLab (www.linklab.se), the Swedish National Aeronautics Research ProgramNFFP04–S4203andNFFP05–01263,theELLIITExcellenceCenteratLinko¨ping- Lund for Information Technology, the Swedish Foundation for Strategic Research (SSF) Strategic Research Center MOVIII, the Center for Industrial Information Technology CENIIT(grantnumber06.09)andtheLinnaeusCenterforControl,Autonomy,Decision- making in Complex Systems (CADICS), funded by the Swedish Research Council (VR). DepartmentofComputerandInformationScience Link¨opinguniversitet SE-58183Link¨oping,Sweden Acknowledgements This thesis would not have been possible without the support of co-workers and friends. Especially I would like to thank: Mysupervisors, professorPatrickDohertyandassociateprofessorJonas Kvarnstr¨om for guidance in research as well as in writing of this thesis. My co-researchers Kaj Holmberg and Oleg Burdakov for many valuable discussions. ThecolleaguesatAIICSandespeciallyOlovAndersson, FredrikHeintz, David Land´en, Martin Magnusson and Piotr Rudol for spending time read- ing this thesis as well as earlier papers. Anne Moe for guiding me through the bureaucratic maze of graduate studies. Otherfriends,toonumeroustomentionbyname,forencouragementand inspiration. Linda for being the world’s best girlfriend. Contents 1 Introduction 1 1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Related Work 7 2.1 UAVs As Relays . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Single Target . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Multiple Targets . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Area Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.6 Ad-hoc Networks and Wireless Sensor Networks. . . . . . . . 12 3 The Relay Positioning Problems 15 3.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Definitions of the Single Target Relay Problems . . . . . . . . 16 3.3 Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.1 Transmission Quality. . . . . . . . . . . . . . . . . . . 19 3.3.2 Position Visibility . . . . . . . . . . . . . . . . . . . . 20 3.3.3 Minimum Free Angle Between Positions . . . . . . . . 21 3.3.4 Minimum Distance to Obstacles . . . . . . . . . . . . 23 3.3.5 Surveillance Cost Functions . . . . . . . . . . . . . . . 23 3.4 Reachability Functions . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Problem Properties . . . . . . . . . . . . . . . . . . . . . . . . 25 3.6 Continuous Solution Methods . . . . . . . . . . . . . . . . . . 27 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Environment Representation and Discretization 31 4.1 Discretization and Graph Creation . . . . . . . . . . . . . . . 31 4.2 Fixed-Size Grids . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Octrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ix 4.4 Expanded Geometry Graphs . . . . . . . . . . . . . . . . . . 35 4.5 Voronoi Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 37 4.6 Discretization Methods Used in Motion Planning . . . . . . . 38 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Relay Positioning Algorithms for Single Target Problems 41 5.1 Existing Algorithms for the STR-ParetoLimited Problem . 42 5.2 A New Label-Correcting Algorithm . . . . . . . . . . . . . . . 44 5.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 44 5.2.2 Algorithm Details . . . . . . . . . . . . . . . . . . . . 46 5.2.3 Correctness Proof . . . . . . . . . . . . . . . . . . . . 50 5.2.4 Time Complexity . . . . . . . . . . . . . . . . . . . . . 52 5.2.5 Improved Preprocessing . . . . . . . . . . . . . . . . . 52 5.2.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3 A New Dual Ascent Algorithm . . . . . . . . . . . . . . . . . 54 5.3.1 Algorithm Details . . . . . . . . . . . . . . . . . . . . 55 5.3.2 Theoretical Properties . . . . . . . . . . . . . . . . . . 57 5.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.4 Performance Improvements . . . . . . . . . . . . . . . 60 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6 Relay Positioning for Multiple Targets 65 6.1 Definition of the Multiple Target Relay Problems . . . . . . . 65 6.2 Relation to Steiner Tree Problems . . . . . . . . . . . . . . . 67 6.2.1 Continuous Steiner Trees . . . . . . . . . . . . . . . . 67 6.2.2 Discrete Steiner Trees . . . . . . . . . . . . . . . . . . 68 6.3 Adapting the Cheapest Path Heuristic . . . . . . . . . . . . . 78 6.3.1 Theoretical Properties . . . . . . . . . . . . . . . . . . 80 6.3.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . 81 6.4 Calculating Pareto-optimal Relay Trees For Two Targets. . . 83 6.4.1 Determining the Set of Pareto-optimal Relay Trees . . 85 6.4.2 Duplicate Edges in the Relay Tree . . . . . . . . . . . 86 6.5 Improving Relay Trees . . . . . . . . . . . . . . . . . . . . . . 87 6.5.1 Reduced Trees . . . . . . . . . . . . . . . . . . . . . . 89 6.5.2 Choosing Subtrees for Optimization . . . . . . . . . . 89 6.5.3 Different Tree Structures . . . . . . . . . . . . . . . . 94 6.5.4 Collisions Between Trees . . . . . . . . . . . . . . . . . 95 6.5.5 Algorithm Details . . . . . . . . . . . . . . . . . . . . 97 6.5.6 Time Complexity . . . . . . . . . . . . . . . . . . . . . 99 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7 Implementation and Experimental Results 103 7.1 Software Architecture . . . . . . . . . . . . . . . . . . . . . . 103 7.2 Problem Setup for Empirical Testing . . . . . . . . . . . . . . 107 7.3 Pareto-Optimal Relay Chains . . . . . . . . . . . . . . . . . . 110 7.4 Optimal Chains Using At Most M UAVs . . . . . . . . . . . 114 7.5 Relay Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8 Discussion 127 8.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 128
Description: