POPULATION DYNAMICS OF THE AMAZONIAN PALM Mauritia flexuosa: MODEL DEVELOPMENT AND SIMULATION ANALYSIS By JENNIFER A. HOLM A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2007 1 © 2007 Jennifer A. Holm 2 To my family who encouraged me at a young age, to keep striving for academic knowledge, and to my friends 3 ACKNOWLEDGMENTS I gratefully thank my supervisory committee, Dr. Kainer and Dr. Bruna, and most importantly my committee chair, Dr. Wendell P. Cropper Jr. for their time and effort. I acknowledge the School of Natural Resources and Conservation, the School of Forest Resources and Conservation, and the Tropical Conservation and Development Program, the United States Forest Service, and the Fulbright Scholar Program for funding and guidance. Data collection in Ecuador was conducted with the help from Dr. Christopher Miller, Drs. Eduardo Asanza and Ana Cristina Sosa, Joaquin Salazar, and all the Siona people of Cuyabeno Faunal Reserve. Data collected in Peru was conducted with the help from Weninger Pinedo Flores, Exiles Guerra, Gerardo Bértiz, Dr. Jim Penn, and with the generosity of Paul and Dolly Beaver of the Tahuayo Lodge. Lastly, I would like to thank my parents for their support through my education experience, Heather, Chris, friends, and fellow graduate students. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS...............................................................................................................4 LIST OF TABLES...........................................................................................................................7 LIST OF FIGURES.........................................................................................................................8 ABSTRACT...................................................................................................................................10 CHAPTER 1 INTRODUCTION..................................................................................................................12 2 POPULATION DYNAMICS OF THE DIOECIOUS AMAZONIAN PALM Mauritia flexuosa: SIMULATION ANALYSIS OF SUSTAINABLE HARVESTING......................14 2.1 Introduction...................................................................................................................14 2.2 Methods.........................................................................................................................17 2.2.1 Study Site..........................................................................................................17 2.2.2 Study Species....................................................................................................17 2.2.3 Data Collection.................................................................................................18 2.2.4 Matrix Model Development and Parameter Estimation....................................19 2.3 Results...........................................................................................................................22 2.3.1 Density Dependence..........................................................................................22 2.3.2 Sustainable Harvest Scenarios..........................................................................23 2.4 Discussion.....................................................................................................................25 2.4.1 Sustainable Harvest Scenarios..........................................................................25 2.4.2 Implications for Management...........................................................................26 3 GENETIC ALGORIHTM OPTIMIZATION FOR DEMOGRAPHIC PARAMETER CALIBRATION AND POPULATION TRAITS OF A HARVESTED TROPICAL PALM.....................................................................................................................................41 3.1 Introduction...................................................................................................................41 3.1.1 South American Palms and Consequences of Wild Harvesting.......................41 3.1.2 Matrix Modeling and Population Dynamics.....................................................42 3.1.3 Parameter Calibration........................................................................................43 3.1.4 Introduction to Genetic Algorithms..................................................................44 3.1.5 Objectives..........................................................................................................45 3.2 Methods.........................................................................................................................45 3.2.1 Study Site: Ecuador...........................................................................................45 3.2.2 Study Site: Peru.................................................................................................46 3.2.3 Study Species Role in Peru...............................................................................47 3.2.4 Palm Distribution and Matrix Model Development:........................................48 3.2.5 GA Method Description....................................................................................48 5 3.3 Results...........................................................................................................................51 3.3.1 Genetic Algorithms...........................................................................................51 3.3.2 Peru Size Class Distribution and Demographic Characteristics.......................54 3.3.3 Genetic Algorithm: Harvest History for Peru M. flexuosa Palm Population....55 3.4 Discussion.....................................................................................................................57 3.4.1 Genetic Algorithms...........................................................................................57 3.4.2 Peru Size Class Distribution and Demographic Characteristics.......................59 3.4.3 Genetic Algorithm: Peru M. flexuosa Palm Population....................................60 3.5 Conclusions...................................................................................................................60 4 SUMMARY............................................................................................................................84 4.1 Applicability..................................................................................................................84 4.2 Future for M. flexuosa...................................................................................................84 4.3 Future Research.............................................................................................................85 APPENDIX: PERU GARDEN DATA FOR Mauritia flexuosa...................................................86 LIST OF REFERENCES...............................................................................................................89 BIOGRAPHICAL SKETCH.........................................................................................................96 6 LIST OF TABLES Table page 2-1 Observed size class distribution (based on height) of M. flexuosa....................................29 2-2 M. flexuosa (Ecuador) transition matrix............................................................................30 2-3 Size class distribution for density independent (DI) and density dependent (DD) models after 100 yr............................................................................................................31 2-4 Adult (stage 5 & 6) M. flexuosa transition probabilities....................................................32 3-1 M. flexuosa population size class distribution in Ecuador and Peru..................................62 3-2 Optimal Ecuador seedling parameters and carrying capacity using observed demographic parameters....................................................................................................63 3-3 Observed range of the 13 non-seedling demographic transition probabilities..................64 3-4 Observed and optimal Ecuador transition matrices...........................................................65 3-5 Optimal Ecuador seedling parameters and carrying capacity using optimal demographic parameters....................................................................................................66 3-6 Demographic traits for the Peru population in size classes 3-6 (palms that have developed trunks)...............................................................................................................67 3-7 GA estimates of harvest regimes consistent with the observed size class distribution.....68 3-8 Peru’s harvesting history found using separate GAs which uses the Ecuador optimal demographic parameters to reach Peru’s observed population distribution......................69 7 LIST OF FIGURES Figure page 2-1 Elasticity for the M. flexuosa matrix population model.....................................................33 2-2 Density dependent model for M. flexuosa simulated over 500 yr.....................................34 2-3 Four simulated harvesting scenarios with various harvest frequencies and intensities for M. flexuosa...................................................................................................................35 2-4 The average number of female palms the year before harvesting over a 100 yr harvest regime....................................................................................................................38 2-5 Harvesting 22.45 percent at a frequency of every 20 yr....................................................39 2-6 Two harvest scenarios (both 75 percent at a frequency of every 10 yr) with density independence (DI) and density dependence (DD).............................................................40 3-1 Map of study site in Ecuador.............................................................................................71 3-2 Map of study site in Peru...................................................................................................72 3-3 Ecuador Genetic Algorithm (GA) size class distribution and observed size class distribution after running a GA to find optimal seedling parameters (stasis and growth) and carrying capacity. Fitness score for this GA is 46.67....................................73 3-4 Ecuador GA size class distribution and observed size class distribution after running a GA using the observed transition parameters and evaluating how well it matches the observed population distribution. Fitness score for this GA is 67.03..........................74 3-5 Genetic algorithm simulated and observed size class distribution of the Ecuador palm population for unconstrained, all values (UCAV) GA optimization. Fitness score for this GA is 14.14.................................................................................................................75 3-6 Genetic algorithm simulated and observed size class distribution of the Ecuador palm population for unconstrained, no two-size class transitions (UCNT) GA optimization. Fitness score for this GA is 5.07........................................................................................76 3-7 Stasis and growth demographic points generated from a GA optimization for (A) an UCAV (unconstrianed, all value), and (B) an UCNT (unconstrained, no two size- class transitions).................................................................................................................77 3-8 Stasis and growth demographic points generated from CAV (constrained, all values) GA optimization.................................................................................................................78 3-9 Stasis and growth demographic points generated from a CNT (constrained, no two- size class transitions) GA optimization..............................................................................79 8 3-10 Genetic algorithm simulated and observed size class distribution of the Ecuador palm population for CAV (constrained, all values) GA optimization. Fitness score for this GA is 6.29..........................................................................................................................80 3-11 Genetic algorithm simulated and observed size class distribution of the Ecuador palm population for CNT (constrained, no two-size class transitions) GA optimization. Fitness score for this GA is 7.69........................................................................................81 3-12 M. flexuosa population distribution for palm populations in a 1ha area in Peru and Ecuador..............................................................................................................................82 3-13 Distribution of male vs. female palms and estimated, averaged fecundity values from Peru and Ecuador...............................................................................................................83 A-1 Average height(m) for M. flexuosa palms sampled in Peru (wild and gardens). A-2 Comparison of average palm height and average number of petioles, for juvenile M. flexuosa located in gardens and wild populations (in Peru). A-3 M. flexuosa palms in Peru homegardens. (A) Picture of juvenile (pre-reproductive) M. flexuosa palms in a homegardens. (B) Picture of dwarf, reproductive female palm in Peru. 9 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science POPULATION DYNAMICS OF THE AMAZIONIAN PALM Mauritia flexuosa: MODEL DEVELOPMENT AND SIMULATION ANALYSIS By Jennifer A. Holm December 2007 Chair: Wendell P. Cropper Jr. Major: Interdisciplinary Ecology The tropical palm Mauritia flexuosa has high ecological and economic value, but some wild populations are harvested excessively by cutting the stem to retrieve the fruit. It is likely that M. flexuosa harvesting in the Amazon will continue to increase over time. I investigated the population dynamics of this important palm, the effects of harvesting, and suggested sustainable harvesting regimes. Data were collected from populations in the Ecuadorian Amazon that were assumed to be stable. I used a matrix population model to calculate the density independent asymptotic population growth rate (λ = 1.046) and to evaluate harvesting scenarios. Elasticity analysis showed that survival (particularly in the second and fifth size class) contributes more to the population growth rate than does growth and fecundity. In order to simulate a stable population at carrying capacity, density dependence was incorporated and applied to the seedling survival and growth parameters in the transition matrix. Harvesting scenarios were simulated with the density dependent population models to predict sustainable harvesting regimes for the dioecious palm. I simulated the removal of only female palms and showed how both sexes are affected with harvest intensities between 15 and 75% and harvest intervals of 1 to 15 years. By assuming a minimum female threshold, I demonstrated a continuum of sustainable harvesting schedules for various intensities and frequencies for 100 years of harvest. Furthermore, by 10
Description: