ebook img

Polymeric Nanocomposites - Theory and Practice PDF

352 Pages·2008·7.805 MB·352\352
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Polymeric Nanocomposites - Theory and Practice

Sati N. Bhattacharya Musa R. Kamal Rahul K. Gupta Polymeric Nanocomposites Theory and Practice Carl Hanser Publishers, Munich • Hanser Gardner Publications, Cincinnati The Authors: Prof. Sati N. Bhattacharya, RMIT University, Rheology and Materials Processing Center, School of Civil, Environmental and Chemical Engineering, Melbourne, VIC, Australia Dr. Rahul K. Gupta, RMIT University, Rheology and Materials Processing Center, School of Civil, Environmental and Chemical Engineering, Melbourne, VIC, Australia Prof. Musa R. Kamal, McGill University, Department of Chemical Engineering, Montréal, Quebec, Canada Distributed in the USA and in Canada by Hanser Gardner Publications, Inc. 6915 Valley Avenue, Cincinnati, Ohio 45244-3029, USA Fax: (513) 527-8801 Phone: (513) 527-8977 or 1-800-950-8977 www.hansergardner.com Distributed in all other countries by Carl Hanser Verlag Postfach 86 04 20, 81631 München, Germany Fax: +49 (89) 98 48 09 www.hanser.de The use of general descriptive names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Library of Congress Cataloging-in-Publication Data Bhattacharya, Sati N. Polymeric nanocomposites : theory and practice / Sati N. Bhattacharya, Musa R. Kamal, Rahul K. Gupta. p. cm. Includes index. ISBN 978-1-56990-374-2 (hardcover) 1. Nanostructured materials. 2. Polymeric composites. I. Kamal, Musa R. (Musa Rasim), 1934- II. Gupta, Rahul K. III. Title. TA418.9.N35B43 2007 620.1‘92--dc22 2007026090 Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.d-nb.de> abrufbar. ISBN 978-3-446-40270-6 All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or by any information storage and retrieval system, without permission in wirting from the publisher. © Carl Hanser Verlag, Munich 2008 Production Management: Steffen Jörg Typeset by Mitterweger & Partner, Plankstadt, Germany Coverconcept: Marc Müller-Bremer, Rebranding, München, Germany Coverdesign: MCP • Susanne Kraus GbR, Holzkirchen, Germany Printed and bound by Druckhaus »Thomas Müntzer« GmbH, Bad Langensalza, Germany Preface Nanostructured multi-phase polymers have generated great interest with promise to produce a new generation of materials displaying enhanced physical,mechanical,thermal, electrical,magnetic,andopticalproperties.Thekeytothesuccessofnanocompositeshinges ontheabilitytoexploitthepotentialof nano-structuringinthefinalproduct.Therefore,it isimportanttodeveloppracticalandeconomicalformulationsandprocessingmethodsfor tailoringasustainablematerialconfigurationatthenanoscalelevel.Recently,muchprogress has been made in meeting this challenge and in developing a wide range of commercial processes, products, and devices as a result of the research efforts and advances by many scientists,engineers,andtechnologists.Whilealargenumberof scientificpapersandsome books on polymer nanocomposites have been published, there is a clear need to bring together the scientific knowledge and the engineering developments relating to these materials in terms of synthesis, characterisation, production, and application. This book deals with clay-based polymer nanocomposites, which have been the subject of extensive researchinthelastdecade.Besidesitslowcost,clayhasaplate-likegeometry,whichcould impartexcellentproductpropertiesunderoptimumnanostructuringconditions. Thebookprovidesanoverviewofthecompositionprocessingproductapplicationrelationships inthefieldofpolymernanocomposites.Itdealswiththefundamentalprinciplesthatgovern the synthesis and behavior of polymer/clay nanocomposites, such as thermodynamics, kinetics,rheology,andmorphology.Otherchapterscoverpracticalaspects,suchasprocessing, performance,and some commercial applications of polymer/clay nanocomposites in selected industries,such as packaging,automotive,electronic,and telecommunications.It is hoped that the book will serve as a reference and guide for those who work in various aspects of the nanocomposite industry and technology or wish to learn about these promising new materials. Thepreparationof thisbookhasbeenpossibleduetotheactivesupportandhelpreceived from many colleagues, research staff and graduate students. The authors would like to express their sincere thanks to all these individuals for the direct and indirect efforts and contributionstothepreparationofthisbook:Dr.S.Raha,Mr.M.Reddy,Mr.M.Pannirselvam andMr.S.Bhattacharya,DrFCser,DrRPrasad,Dr.M.Al-Wohoush,Dr.L.IonescuVasii, Dr.N.Borse,Dr.K.Kim,Dr.L.Feng,Mr.J.Uribe-Calderon,Ms.O.Tavichai,Mr.C.Lungu, and Mr.N.Nassar.We also wish to express our appreciation to our respective universities, RMIT and McGill,and the various granting agencies inAustralia and Canada for material andmoralsupportthatmadeitpossibletoproducethisbook. SatiN.Bhattacharya RahulK.Gupta MusaR.Kamal Table of Content 1 Introduction .......................................................... 1 1.1 PolymerNanocomposites ........................................... 1 1.2 CommercialPotential............................................... 2 1.3 BookStructure.................................................... 3 1.4 References ........................................................ 4 2 PreparationandSynthesis............................................... 5 2.1 PolymerNanocomposites ........................................... 5 2.1.1 Morphologyof Polymer-LayeredSilicateNanocomposites .......... 6 2.1.2 Structureof LayeredSilicates .................................. 7 2.1.3 OrganicallyModifiedClay..................................... 9 2.1.4 Formationof PolymerNanocomposites ......................... 10 2.1.5 Effectof CationExchangeCapacityonOrganoclay................ 11 2.1.6 Effectof OrganicCationStructureonOrganoclay................. 12 2.2 NanocompositesPreparationandSynthesis ............................ 12 2.2.1 SolutionDispersion.......................................... 13 2.2.2 In-SituPolymerization........................................ 15 2.2.3 MeltIntercalation............................................ 16 2.2.4 Effectof Mixing............................................. 20 2.3 PolymerMatrices:Thermoplastics,Thermosets,Elastomers,Natural,and BiodegradablePolymers............................................. 22 2.3.1 Thermoplastics.............................................. 23 2.3.1.1 Polyethylene......................................... 23 2.3.1.2 Polypropylene ....................................... 23 2.3.1.3 Ethylene-VinylAcetate(EVA)Copolymers................ 24 2.3.1.4 Polyamides.......................................... 25 2.3.1.5 Poly(EthyleneTerephtalate)(PET) ...................... 25 2.3.1.6 Polystyrene.......................................... 26 2.3.2 Elastomers.................................................. 27 2.3.3 Thermosets................................................. 28 2.3.3.1 EpoxyNanocomposites................................ 28 2.3.3.2 Polyurethane ........................................ 28 2.3.4 NaturalandBiodegradablePolymers............................ 29 3 FundamentalIssuesinNanocompositeSynthesis........................... 35 3.1 Introduction ...................................................... 35 3.2 ThermodynamicsandInteractions.................................... 36 3.2.1 GeneralThermodynamicRelationships.......................... 36 X Inhalt 3.2.2 Multi-ComponentSystems .................................... 38 3.2.2.1 ChemicalPotential ................................... 38 3.2.2.2 PhaseEquilibriaandPhaseDiagrams.................... 38 3.2.3 SurfaceFreeEnergy.......................................... 43 3.2.4 Typesof InterfacialInteractions................................ 45 3.2.4.1 IntermolecularInteractionsVanDerWaalsForces ......... 45 3.2.4.2 DispersionForcesBetweenTwoMacroscopicBodies....... 47 3.2.4.3 LifshitzApproach .................................... 48 3.2.4.4 Polar(Acid-Base)Interactions.......................... 49 3.2.4.5 ApplicationstoNanocomposites........................ 50 3.3 Modelsof NanocompositesatEquilibrium............................. 53 3.3.1 Introduction................................................ 53 3.3.2 Mean-Field,Lattice-BasedModel............................... 55 3.3.3 Self-ConsistentFieldApproach(SFC)........................... 60 3.3.4 DensityFunctionalTheory(DFT).............................. 69 3.4 MixinginNanocompositeSynthesis .................................. 74 3.4.1 DistributiveMixing .......................................... 74 3.4.2 MixingQualityinNanocomposites............................. 76 3.5 Mechanicsof ParticleSeparationandAgglomerateDispersion............. 82 3.5.1 Separationof SphericalParticles................................ 83 3.5.2 Separationof Platelets........................................ 85 3.5.3 PeelingandLapShearingModels............................... 93 3.5.4 RuptureandErosion ......................................... 96 3.6 MechanismandKineticsof PolymerMeltIntercalation .................. 100 3.6.1 IntercalationMechanism...................................... 101 3.6.2 IntercalationKinetics......................................... 104 3.7 Crystallizationof PolymersinNanocomposites ......................... 109 3.7.1 Crystallizationof Polymers.................................... 109 3.7.2 CrystallineStructureandMorphology........................... 110 3.7.2.1 FoldedChainModel................................. 111 3.7.2.2 CrystallizationfromPolymerMelts...................... 111 3.7.3 CrystallizationKinetics ....................................... 113 3.7.3.1 IsothermalModels ................................... 114 3.7.3.2 Non-IsothermalModels............................... 116 3.7.3.3 NucleationandGrowth:Lauritzen-HoffmanGrowth Theory ............................................. 117 3.7.4 TheCrystallineStructureof PA-6............................... 119 3.7.5 PolymerCrystallizationinNanocomposites ...................... 120 3.7.5.1 GeneralConsiderations ............................... 120 3.7.5.2 CrystallizationKinetics................................ 121 3.7.6 MorphologicalEffects ........................................ 129 3.8 References ........................................................ 132 4 Rheologyof Nanocomposites............................................ 145 4.1 Rheologyof MultiphaseSystems...................................... 145 4.2 Rheologyof Polymer/ClayNanocomposites ............................ 146 Inhalt XI 4.3 RecentStudiesonRheology ......................................... 146 4.4 MeasurementTechniques............................................ 147 4.4.1 SteadyShearMeasurements ................................... 147 4.4.2 DynamicShearMeasurements ................................. 148 4.4.3 ExtensionalRheologyMeasurements............................ 150 4.4.3.1 Meissner-TypeRheometer ............................. 150 4.4.3.2 Drawingof MoltenMonofilamentAfterExtrusion......... 151 4.4.4 MeasuredParameters......................................... 153 4.5 SteadyShearRheology.............................................. 154 4.5.1 SteadyShearRheologyof Nanocomposites....................... 154 4.5.2 ShearThinningBehavior...................................... 155 4.5.3 NormalStressBehavior....................................... 156 4.6 DynamicRheology................................................. 157 4.6.1 DynamicRheologyof Nanocomposites.......................... 159 4.6.2 PercolationThreshold ........................................ 161 4.6.3 Time-TemperatureSuperposition............................... 166 4.6.4 Cox-MerzRule.............................................. 168 4.7 NonLinearViscoelasticProperties.................................... 168 4.8 ExtensionalRheology............................................... 170 4.8.1 Fundamentals............................................... 170 4.8.2 ExtensionalRheologyof Nanocomposites........................ 172 4.8.3 Drawingof MoltenMonofilamentafterExtrusion................. 173 4.9 RheologicalModelingof Nanocomposites.............................. 176 4.9.1 SteadyShearModels ......................................... 177 4.9.1.1 HerschelBerkeleyModel .............................. 177 4.9.1.2 Williamson-CarreauModel ............................ 179 4.9.1.3 MolecularDynamicsSimulation........................ 180 4.9.1.4 Coarse-GrainedComputerSimulation................... 182 4.9.2 ViscoelasticModels .......................................... 183 4.9.2.1 TheNetworkModel.................................. 183 4.9.2.2 ModelValidationTechnique............................ 188 4.9.2.3 TheFENEDumbbellModel ........................... 189 4.9.2.4 MolecularDynamicSimulation......................... 197 4.9.2.5 Bi-ModeFENEDumbbellModel ....................... 202 4.9.3 ExtensionalRheology......................................... 206 4.9.3.1 K-BKZModel ....................................... 208 4.9.3.2 ValidationTechnique ................................. 209 4.10 Summary......................................................... 212 5 Processingof Nanocomposites........................................... 233 5.1 Introduction ...................................................... 233 5.1 Extrusion......................................................... 234 5.1.1 Dispersionof Clay........................................... 235 5.1.2 Effectof ExtruderTypes ...................................... 240 5.1.3 Effectof ProcessingConditions ................................ 245 5.2 InjectionMolding.................................................. 245 XII Inhalt 5.2.1 StructuralHierarchy.......................................... 246 5.2.2 BarrierandMechanicalPropertiesforInjectionMoldedProducts.... 251 5.2.3 MicrocellularInjectionMolding................................ 252 5.3 BlowMolding..................................................... 255 5.3.1 BarrierPropertiesof BlowMoldedProducts ..................... 255 5.4 Foaming.......................................................... 257 5.5 RotationalMolding ................................................ 263 6 StructureandPropertiesCharacterization................................. 269 6.1 Introduction ...................................................... 269 6.2 ScatteringTechniques............................................... 270 6.2.1 X-rayScatteringFundamentals................................. 271 6.2.2 X-RayScatteringStudiesonPolymerNanocomposites............. 280 6.2.2.1 WAXSStudies ....................................... 280 6.2.2.2 SAXSStudies........................................ 285 6.2.3 SmallAngleLightScattering(SALS) ............................ 288 6.2.3.1 SALSTechniques..................................... 288 6.2.3.2 SALSStudiesonPolymerNanocomposites ............... 289 6.2.4 SmallAngleNeutronScattering(SANS)......................... 297 6.2.4.1 SANSTechniques .................................... 297 6.2.4.2 SANSStudiesonPolymerNanocomposites............... 297 6.3 MicroscopicTechniques............................................. 299 6.3.1 ElectronMicroscopy ......................................... 299 6.3.2 ElectronMicroscopyStudiesonPolymerNanocomposites.......... 299 6.3.2.1 SEMStudies......................................... 299 6.3.2.2 TEMStudies ........................................ 301 6.3.2.3 AFMStudies ........................................ 304 6.4 SpectroscopicTechniques ........................................... 307 6.4.1 FourierTransformInfra-Red(FTIR)Spectroscopy ................ 308 6.4.2 NuclearMagneticResonance(NMR)............................ 310 6.4.3 Ultraviolet(UV)Spectroscopy ................................. 312 6.5 Chromatography................................................... 313 6.6 Solid-StateCharacterization:MechanicalTesting........................ 315 6.6.1 MechanicalTesting........................................... 315 6.6.2 DynamicMechanicalAnalysis(DMA)........................... 317 6.7 ThermalCharacterization ........................................... 320 6.7.1 DifferentialScanningCalorimetry(DSC)........................ 320 6.7.2 ThermalGravimetricAnalysis(TGA) ........................... 325 6.7.3 HeatDistortionTemperature(HDT)............................ 329 6.7.4 ConeCalorimetry............................................ 331 7 Applicationof PolymerNanocomposites.................................. 339 7.1 Introduction ...................................................... 339 7.2 Thermoplastics.................................................... 341 Inhalt XIII 7.2.1 Polyethylene(PE)............................................ 342 7.2.2 Polypropylene(PP) .......................................... 344 7.2.2.1 AutomotiveApplications .............................. 347 7.2.2.2 BodyExterior........................................ 349 7.2.2.3 BodyInterior........................................ 350 7.2.3 Polyamides(PA)............................................. 351 7.2.4 Ethylene-VinylAcetate(EVA).................................. 355 7.2.5 PolyethyleneTerephthalate(PET)............................... 357 7.2.6 VersatileNanocarbons........................................ 358 7.3 Thermosets....................................................... 359 7.3.1 Polyurethanes(PU) .......................................... 360 7.3.2 Epoxies .................................................... 362 7.3.3 UnsaturatedPolyesters(UPE).................................. 364 7.3.4 Phenolics................................................... 364 7.4 BiodegradablePolymers............................................. 366 7.4.1 Polylactide(PLA)anditsNanocomposites....................... 367 7.4.2 Polycaprolactone(PCL)....................................... 368 7.4.3 Starch...................................................... 369 7.5 FinalComments................................................... 370 1 Introduction Nanotechnology has created a key revolution in the 21st century exploiting the new properties, phenomena and functionalities exhibited by matters when dealt at the level of few nanometers as opposed to hundred nanometers and above. Nanoscale materials are already recognized as unique because they produce qualitatively new behavior when comparedwiththeirmacroscopiccounterparts.Itisunderstoodthatwhenthedomainsize withinthematerialsbecomescomparablewiththephysicallengthscale,suchassegmentsof a polymer macromolecule, the expected physical phenomena and the response to any external disturbance do not follow the established principles. The scientific phenomena occurringinnanoscalesystemscanonlybeexplainedbynewtheoreticalprinciplesandby experimental techniques which are in the process of development. The challenge is to manage the transition region where nanoscale phenomena are evolving from microscopic andmacroscopicbulkproperties.Thelinkingofmolecularinteractiontonanostructuresto bulkpropertiesisachallenge,bothscientificallyandtechnologically.Anotherchallengeisto understand how deliberate tailoring at the nanoscale can produce novel and controlled functionalitiesof thesematerials. 1.1 Polymer Nanocomposites Nanocomposite technology is a newly developed field,in which nanofillers are added to a polymer to reinforce and provide novel characteristics. Nanocomposite technology is applicable to a wide range of polymers from thermoplastics and thermosets to elastomers. Two decades ago,researchers from Toyota Central Research and Development produced a new group of polymer-clay complexes or composites, which was aptly called polymer- layered silicate nanocomposites or polymer nanocomposites. Today, there is a variety of nanofillersusedinnanocomposites.Costandavailabilitycontinuetochangeasthefieldis relativelynewandseveralof thesefillersarestillbeingdeveloped.Themostcommontypes of fillers are natural clays (mined, refined and treated), synthetic clays, nanostructured silicas, nanoceramics, nanocalcium carbonates and nanotubes (carbon based). The properties conferred by the nanoparticles to the polymer matrix are remarkable. The property enhancements have allowed these materials to commercially compete with traditionalmaterials.[Collister(2001)]listssomeof thepropertyimprovementsas: Efficientreinforcementwithminimallossinductilityandimpactstrength, Thermalendurance, Flameretardance, Improvedliquidandgasbarrierproperties, Improvedabrasionresistance, Reducedshrinkageandresidualloss,and Alteredelectrical,electronicandopticalproperties. 2 1 Introduction [Referencesonpage4] Layeredsilicates(clay)dispersedasreinforcementinanengineeringpolymermatrixisone of the most important forms of polymer nanocomposites. Amongst all the potential nanocompositesprecursors,thosebasedonclayandlayeredsilicatehavebeenmorewidely studied, probably because the starting clay materials are easily available and because their intercalation chemistry has been studied for a long time [Van Olphen (1977)]. The commercialuseofintercalatedclayforindustrialapplicationgoesbackmanydecades.Early applicationreportedduringthe1930s –tothe1950sforintercalatedclaywaspapercoating (hydrophilic application) and lubricants, grease and oil based mud (hydrophobic application). First use of polymer/clay composites using onium compounds to intercalate montmorillonite clay MMT was reported in 1950 [Carter et al.(1950)].Polymerization of vinylmonomerinthepresenceofintercalatedMMTwaslaterreported[Blumslein(1961)]. The manufacture of LDPE/clay hybrid (1:1) was reported in a patent by Nahin and Bucklund in 1963 [Nahin and Backlund (1963)]. Fujiwara and Sakamoto filed a patent application for ammonium salt intercalated clays for hydrophobic matrices in 1976 [Fujiwara and Sakamoto (1976)]. Organo-clay was added to the monomer before polymerization of PA. The first patent by the Toyota group for in situ polymerization of styreneandothervinylmonomersinthepresenceofclaywasobtainedin1984.ThefirstUS patentforPA6/claynanocomposites,whereclaywasusedinsmallquantities,wasobtained in1989[Usukietal.(1989)]. Few nanocomposites have been produced commercially, but their potential applications havefuelledfrenzyintheresearcharena[ZerdaandLesser(2001)].Forexample,intheUS, research funding for the National Nanotechnology Initiative in 2003 alone exceeded US $600Million. 1.2 Commercial Potential ThefirstcommercialnanocompositeproductwasbasedontheToyotaprocessofin-reactor processing of caprolactum and montmorillonite to produce a polyamide 6-clay product. This producthasbeen commercially available for severalyears.Generalmotorusesalarge amount of polyolefin-based clay nanocomposites for some of its vehicle parts. Mitsubishi Gas Chemical Company [Sherman (2004)] offers nylon-6 based nanocomposites with highlyimprovedgasbarrierpropertiescomparedtounfillednylon-6,ethylene-vinylalcohol (EVOH)andpolypropylene(PP). Althoughthepotentialforthecommercialapplicationofnanocompositesisenormous,the actual application has been occurring at a very slow pace. In many instances, the performanceofthedevelopednanocompositesdidnotmeettheexpectations,e.g.,notvery significant increase in their useful properties or drop in mechanical or optical properties. Whileithasbeenshownthatthemodulusorstiffnessofthermoplasticscanbeincreasedby adding very small amounts of clay, in many cases it comes with the disadvantage of decreasing strength.Addition of clay to polymers,such as nylon-6 and EVA,increases the gas barrier properties but their optical properties may be compromised. Performance not yet meeting expectations may not be due to any inherent flaws in the concept of nanocompositetechnology.Itisratherduetothefactthatthedevelopmentsinthisnewarea

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.