ebook img

Polylactic Acid: PLA Biopolymer Technology and Applications PDF

350 Pages·2012·3.75 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Polylactic Acid: PLA Biopolymer Technology and Applications

Polylactic Acid PLASTICSDESIGNLIBRARY(PDL) PDLHANDBOOKSERIES SeriesEditor:SinaEbnesajjad,PhD President,FluoroConsultantsGroup,LLC ChaddsFord,PA,USA www.FluoroConsultants.com ThePDLHandbookSeriesisaimedatawiderangeofengineersandotherprofessionals workingintheplasticsindustry,andrelatedsectorsusingplasticsandadhesives. PDLisaseriesofdatabooks,referenceworksandpracticalguidescoveringplastics engineering,applications,processing,andmanufacturing,andappliedaspectsof polymerscience,elastomersandadhesives. Recenttitlesintheseries Brandau,Bottles,PreformsandClosures,SecondEdition ISBN:9781437735260 Brandau,StretchBlowMolding,SecondEdition ISBN:9781437735277 Ebnesajjad,HandbookofAdhesivesandSurfacePreparation ISBN:9781437744613 Grot,FluorinatedIonomers,SecondEdition ISBN:9781437744576 Kutz,AppliedPlasticsEngineeringHandbook ISBN:9781437735147 Kutz,PEEKBiomaterialsHandbook ISBN:9781437744637 McKeen,PermeabilityPropertiesofPlasticsandElastomers,ThirdEdition ISBN:9781437734690 Sastri,PlasticsinMedicalDevices ISBN:9780815520276 Wagner,MultilayerFlexiblePackaging ISBN:9780815520214 Woishnis&Ebnesajjad,ChemicalResistanceofThermoplastics(2volumeset) ISBN:9781455778966 Tosubmitanewbookproposalfortheseries,pleasecontact SinaEbnesajjad,SeriesEditor [email protected] or MatthewDeans,SeniorPublisher [email protected] Copyrightr2012ElsevierInc.Allrightsreserved. Polylactic Acid PLA Biopolymer Technology and Applications Lee Tin Sin Abdul Razak Rahmat Wan Azian Wan Abdul Rahman AMSTERDAM(cid:1)BOSTON(cid:1)HEIDELBERG(cid:1)LONDON NEWYORK(cid:1)OXFORD(cid:1)PARIS(cid:1)SANDIEGO SANFRANCISCO(cid:1)SINGAPORE(cid:1)SYDNEY(cid:1)TOKYO WilliamAndrewisanimprintofElsevier WilliamAndrewisanimprintofElsevier TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK 225WymanStreet,Waltham,MA02451,USA Firstedition2012 Copyrightr2012ElsevierInc.Allrightsreserved Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedin anyformorbyanymeanselectronic,mechanical,photocopying,recordingorotherwise withoutthepriorwrittenpermissionofthepublisher PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRights DepartmentinOxford,UK:phone(144)(0)1865843830;fax(144)(0)1865853333; email:permissions@elsevier.com.Alternativelyyoucansubmityourrequestonlineby visitingtheElsevierwebsiteathttp://elsevier.com/locate/permissions,andselecting ObtainingpermissiontouseElseviermaterial. Notice Noresponsibilityisassumedbythepublisherforanyinjuryand/ordamagetopersonsor propertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructionsorideascontainedinthematerialherein. Becauseofrapidadvancesinthemedicalsciences,inparticular,independentverification ofdiagnosesanddrugdosagesshouldbemade BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-1-4377-4459-0 ForinformationonallElsevierpublications visitourwebsiteatbooks.elsevier.com TypesetbyMPSLimited,Chennai,India www.adi-mps.com PrintedandboundinGreatBritain 1213141516 987654321 Contents 1 Overview of Poly(lactic Acid) 1 1.1 Background to Biodegradable Polymers 1 1.2 Market Potential of Biodegradable Polymers and PLA 13 1.3 General Properties and Applications of PLA 33 1.3.1 PLA for Domestic Applications 33 1.3.2 PLA and Copolymers for Biomedical Applications 43 1.4 Environmental Profile of PLA 57 1.5 Ecoprofile of PLA in Mass Production 58 1.6 Environmental Impact of PLA at the Post-Consumer Stage 63 1.7 Conclusion 67 References 67 2 Synthesis and Production of Poly(lactic Acid) 71 2.1 Introduction 71 2.2 Lactic Acid Production 72 2.2.1 Laboratory Scale Production of Lactic Acid 85 2.3 Lactide and Poly(lactic Acid) Production 86 2.3.1 Review of Lactide Production Technology 88 2.3.2 Polymerization and Copolymerization of Lactide 94 2.3.3 Lactide Copolymer 97 2.3.4 Quality Control 99 2.3.5 Quantification of Residual Lactide in PLA 100 2.3.6 Quantification of D-Lactic Acid Content in PLA 103 2.4 Conclusion 105 References 105 v vi CONTENTS 3 Thermal Properties of Poly(lactic Acid) 109 3.1 Introduction 109 3.2 Thermal Transition and Crystallization of PLA 112 3.3 Thermal Decomposition 123 3.4 Heat Capacity, Thermal Conductivity and Pressure(cid:3)Volume(cid:3)Temperature of PLA 131 3.5 Conclusion 138 References 139 4 Chemical Properties of Poly(lactic Acid) 143 4.1 Introduction 143 4.2 Stereochemistry of Poly(lactic Acid) 146 4.3 Analytical Technique of PLA 154 4.3.1 Nuclear Magnetic Resonance Spectroscopy 154 4.3.2 Infrared Spectroscopy 157 4.4 Solubility and Barrier Properties of PLA 162 4.4.1 Solubility of Polylactic Acid 163 4.4.2 Permeability of Polylactic Acid 164 4.5 Conclusion 172 References 172 5 Mechanical Properties of Poly(lactic Acid) 177 5.1 Introduction 177 5.2 Effect of Crystallinity and Molecular Weight on Mechanical Properties of PLA 179 5.3 Effect of Modifier/Plasticizer on PLA 182 5.4 Polymer Blends of PLA 191 5.4.1 Poly(lactic Acid) and Polycaprolactone Blend 192 5.4.2 Blends of Polylactide with Degradable or Partially Degradable Polymers 198 5.4.3 Blends of Polylactide and Polyhydroxyalkanoates 202 5.4.4 PLA Blends with Nondegradable Polymers 207 5.5 Conclusion 215 References 215 CONTENTS vii 6 Rheological Properties of Poly(lactic Acid) 221 6.1 Introduction 221 6.2 Rheological Properties of Poly(lactic Acid) 222 6.3 Effects of Molecular Weight 226 6.4 Effects of Branching 230 6.5 Extensional Viscosity 232 6.6 Solution Viscosity of PLA 233 6.7 Rheological Properties of Polymer Blends 233 6.7.1 PLA/PBAT Blend 235 6.7.2 Blend with Layered Silicate Nanocomposites 237 6.7.3 PLA/Polystyrene Blend 239 6.8 Conclusion 243 References 243 7 Degradation and Stability of Poly(lactic Acid) 247 7.1 Introduction 247 7.2 Factors Affecting PLA Degradation 248 7.3 Hydrolytic and Enzymatic Degradation of PLA 255 7.4 Environmental Degradation of PLA 265 7.5 Thermal Degradation of PLA 278 7.6 Flame Resistance of PLA 288 7.7 Conclusion 295 References 295 8 Applications of Poly(lactic Acid) 301 8.1 Introduction 301 8.2 Poly(lactic Acid) for Domestic Applications 302 8.3 Poly(lactic Acid) for Engineering and Agricultural Applications 317 8.4 Poly(lactic Acid) for Biomedical Applications 317 8.5 Conclusion 317 References 326 Index 329 This pageintentionallyleftblank 1 Overview of Poly(lactic Acid) Chapter Outline 1.1 Background to Biodegradable Polymers 1 1.2 Market Potential of Biodegradable Polymers and PLA 13 1.3 General Properties and Applications of PLA 33 1.3.1 PLA for Domestic Applications 33 1.3.2 PLA and Copolymers for Biomedical Applications 43 1.4 Environmental Profile of PLA 57 1.5 Ecoprofile of PLA in Mass Production 58 1.6 Environmental Impact of PLA at the Post-Consumer Stage 63 1.7 Conclusion 67 References 67 1.1 Background to Biodegradable Polymers People have been using polymers for thousands of years. In ancient times natural plant gum was used to adhere pieces of wood in house building. When the ancients started to explore the oceans, natural plant gum was applied as a waterproof coating to boats. At that time people did not know the extent to which poly- mers could be put to use, so their use was limited to very specific applications. Of course, the ancients depended on plant-derived polymers. No modifications were made to their formulation, nor werepolymerssynthesizedtoimproveapplications. Natural rubber has been known about since 1495, when Christopher Columbus landed on the island of Haiti and saw people playing with an elastic ball. At that time rubber latex was harvested from the rubber tree Hevea brasiliensis as a sticky lump, which had limited applications. However, by 1844 Charles Goodyear discovered and patented a method to sulfur PolylacticAcid.DOI:http://dx.doi.org/10.1016/B978-1-4377-4459-0.00001-9 ©2012ElsevierInc.Allrightsreserved. 1

Description:
Polylactic Acid (PLA) is the first viable thermoplastic that can be produced from a plant-based feedstock such as corn or sugar cane, and yet be processed by the conventional melt processing technologies. At the same time, Polylactic Acid is produced at the largest industrial scale of all biodegrada
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.