ebook img

Point Processes for Reliability Analysis: Shocks and Repairable Systems PDF

427 Pages·2018·4.522 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Point Processes for Reliability Analysis: Shocks and Repairable Systems

Springer Series in Reliability Engineering Ji Hwan Cha Maxim Finkelstein Point Processes for Reliability Analysis Shocks and Repairable Systems Springer Series in Reliability Engineering Series editor Hoang Pham, Piscataway, USA More information about this series at http://www.springer.com/series/6917 Ji Hwan Cha Maxim Finkelstein (cid:129) Point Processes for Reliability Analysis Shocks and Repairable Systems 123 JiHwan Cha Maxim Finkelstein Department ofStatistics Department ofMathematical Statistics EwhaWomansUniversity University of the FreeState Seoul Bloemfontein Korea (Republicof) SouthAfrica and ITMO University Saint Petersburg Russia ISSN 1614-7839 ISSN 2196-999X (electronic) SpringerSeries inReliability Engineering ISBN978-3-319-73539-9 ISBN978-3-319-73540-5 (eBook) https://doi.org/10.1007/978-3-319-73540-5 LibraryofCongressControlNumber:2017962972 ©SpringerInternationalPublishingAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To My Family and Friends —Ji Hwan Cha To My Family —Maxim Finkelstein Preface This book is about point processes and their applications in reliability and risk analysis. In the first part, we provide a general introduction to the ‘basic’ point processes and discuss their properties, and then consider the corresponding appli- cationslater.However,intheapplicationspart,wedonotaimatthebroadcoverage of the field but rather focus on the models and applications that have been inves- tigatedbytheauthorsmostlyinthelast10yearsandwhichweconsiderimportant fromtheoreticalandpracticalpointsofview.Thosearevariousshockmodelswhen apoint processdescribesanimpact ofanenvironmentonanoperatingsystem and modelsoffailure/repairwhentheconsecutiveinstantsoffailure/repairaremodelled by a point process. Wedealwith variousmodels basedonPoissonandrenewalprocessesandtheir generalizations. For instance, a renewal process that describes a sequence of instantaneousperfect repairsof asystem isgeneralized tothecase when the repair isimperfect thus forming apoint process ofimperfect (general) repairs. Reliability characteristics of repairable systems under a general repair can be of a paramount importancewhenplanningoperationofasystemforlongperiodsoftime.Minimal repair, when a system is repaired to a statistical state it had prior to failure, is a specific case of a general repair. It is well known that the process of instantaneous minimalrepairsischaracterizedbythenonhomogeneousPoissonprocess(NHPP). Poisson processes are also very popular in numerous reliability engineering applications. The NHPP possesses the independent increments property, which is, in fact, restrictive, especially in applications, as stochastic phenomena in many real-worldproblemsdonotmeetthisassumption.Therefore,inourbook,werelax thisassumptionanddescribeindetailthegeneralizedPolyaprocess(GPP)recently introduced and studied by the authors. This process has dependent increments and the probability of an event occurrence in an infinitesimal unit interval of time alreadydependsonthenumberofeventsoccurredpreviously.Thisprocess,onone hand,ismuch morerealistic inmanypracticalsituationsand,ontheother hand,is mathematicallytractable.Asignificantpartofourbookisdevotedtothetheoryand applications of the univariate and multivariate GPP. vii viii Preface Allrealobjectsareoperatinginachanging(stochastic)environment.Oneofthe waystomodelanimpactofthisenvironmentisviatheexternalshocksoccurringin accordance with some stochastic point processes. We understand the term ‘shock’ in a very broad sense as some instantaneous and potentially harmful event (e.g. electrical impulses of large magnitude, demands for energy in biological objects, insurance claims in finance, earthquakes, etc.). Shock models are widely used in practical and theoretical reliability and in the other disciplines as well. Numerous shock models have been studied in the literature during the last decades. Shock models in reliability mostly deal with survival characteristics of engineering sys- tems subject to external point events. Therefore, under different assumptions and settings, we consider a number of survival models for systems operatingunder the shock processes (renewal, NHPP, GPP). We hope that our book will be useful to reliability specialists and graduate students in reliability or applied probability. It also contains numerous stochastic models that can be of interest to applied mathematicians and statisticians. Ji Hwan Cha’s work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1A2- B2014211). Ji Hwan Cha acknowledges the support of the Ewha Womans University (Seoul, Republic of Korea). Ji Hwan Cha also greatly appreciates the help, assistanceand sacrifice ofCocoDaram(Seungsin Lee). MaximFinkelsteinacknowledgesthesupportoftheUniversityoftheFreeState (Bloemfontein,SouthAfrica),theNationalResearchFoundation(SouthAfrica)and the ITMO University (St. Petersburg, Russia). Wearealsogratefultoourcolleagues,co-workersandtheformerstudentsofJi Hwan Cha (Dr. Hyunju Lee, Dr. Juyoung Kim). Their support and discussions contributed a lot to this project. Finally, we are indebted to Dhanaganapathy Madhavan, Anthony Doyle and the Springer stafffor their editorial work. Seoul, Korea (Republic of) Ji Hwan Cha Bloemfontein, South Africa/Saint Petersburg, Russia Maxim Finkelstein November 2017 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Aim and Scope of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Brief Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Preliminaries: Reliability and Point Processes. . . . . . . . . . . . . . . . . 9 2.1 Distribution Function and Failure Rate. . . . . . . . . . . . . . . . . . . 9 2.2 Mean Remaining Lifetime. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Monotonicity of the Failure Rate and the MRL Function . . . . . 17 2.4 Stochastic Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Point Processes and Their Characterization. . . . . . . . . . . . . . . . 24 2.6 Perfect and Minimal Repair. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.7 Shocks and Extreme Shock Model. . . . . . . . . . . . . . . . . . . . . . 31 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Renewal Processes and Applications. . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 Definition and Main Properties . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Limiting Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Alternating Renewal and Renewal Reward Processes . . . . . . . . 47 3.4 Applications of Renewal Theory . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.1 Renewal Reward Process with Continuous Output . . . . 51 3.4.2 Alternating Renewal Process with Gradual Repair . . . . 53 3.4.3 Classical Optimal Replacement Problem and Its Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.4 Using Renewal Equations in Shocks Modeling . . . . . . 64 3.4.5 Renewal in Populations of Technical Items and Organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 ix x Contents 4 Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1 Homogeneous Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Nonhomogeneous Poisson Process. . . . . . . . . . . . . . . . . . . . . . 76 4.3 Minimal Repair and Applications to Optimal Maintenance . . . . 86 4.4 Simple Poisson Shock Models. . . . . . . . . . . . . . . . . . . . . . . . . 93 4.4.1 ‘Classical’ Extreme Shock Model . . . . . . . . . . . . . . . . 93 4.4.2 Direct Impact on the Failure Rate . . . . . . . . . . . . . . . . 95 4.5 General Compound Poisson Process and a Shot Noise Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.6 Mixed Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5 Advanced Poisson Shock Models . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.1 The Terminating Shock Process with Independent Wear Increments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.1.1 General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.1.2 Exponentially Distributed Boundary . . . . . . . . . . . . . . 114 5.1.3 Deterministic Boundary . . . . . . . . . . . . . . . . . . . . . . . 117 5.2 History-Dependent Termination Probability . . . . . . . . . . . . . . . 120 5.3 Shot Noise Process for the Failure Rate . . . . . . . . . . . . . . . . . . 127 5.3.1 Shot Noise Process Without Critical Shocks . . . . . . . . 127 5.3.2 Shot Noise Process with Critical Shocks and Deterioration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.4 Extreme Shock Model with Delayed Termination. . . . . . . . . . . 139 5.5 Cumulative Shock Model with Initiated Wear Processes . . . . . . 142 5.6 ‘Curable’ Shock Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.7 Stress-Strength Model with Delay and Cure . . . . . . . . . . . . . . . 151 5.8 Survival of Systems with Protection Subject to Two Types of External Attacks . . . . . . . . . . . . . . . . . . . . . . 153 5.9 Information-Based Thinning of Shock Processes. . . . . . . . . . . . 160 5.9.1 General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5.9.2 Formal Description of the Information-Dependent Thinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.9.3 Stress-Strength Type Classification Model . . . . . . . . . . 164 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6 Poisson Shock Model with Applications to Preventive Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.1 Conditional Characteristics and Interpretation . . . . . . . . . . . . . . 169 6.1.1 Conditional Characteristics . . . . . . . . . . . . . . . . . . . . . 169 6.1.2 A Specific Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.1.3 The Dynamics of Conditional Distributions . . . . . . . . . 177

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.