ebook img

Point process theory and applications: marked point and piecewise deterministic processes PDF

329 Pages·2006·1.434 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Point process theory and applications: marked point and piecewise deterministic processes

Probability and its Applications SeriesEditors CharlesNewman SidneyResnick Martin Jacobsen Point Process Theory and Applications Marked Point and Piecewise Deterministic Processes Birkha¨user Boston Basel Berlin • • MartinJacobsen UniversityofCopenhagen InstituteofMathematicalSciences DepartmentofAppliedMathematicsandStatistics 5Universitetsparken DK-2100CopenhagenØ Denmark MathematicsSubjectClassification(2000):60G07,60G44,60G55,60G57, 60H05,60J25,60J35,60J75,60J80,60K25,62N01,91B28,91B30(primary); 60G30,60G40,60G51,60J57,60K15(secondary) LibraryofCongressControlNumber:2005934409 ISBN-100-8176-4215-3 eISBN0-8176-4463-6 ISBN-13978-0-8176-4215-0 Printedonacid-freepaper. c2006Birkha¨userBoston (cid:1) Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrit- tenpermissionofthepublisher(Birkha¨userBoston,c/oSpringerScience BusinessMediaInc.,233 + SpringStreet,NewYork,NY10013,USA),exceptforbriefexcerptsinconnectionwithreviewsor scholarlyanalysis.Useinconnectionwithanyformofinformationstorageandretrieval,electronic adaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterde- velopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. PrintedintheUnitedStatesofAmerica. (TXQ/EB) 987654321 www.birkhauser.com Contents Preface .......................................................... ix PartI Theory 1 Introduction.................................................. 3 1.1 Overview ................................................... 3 1.2 Conditionalexpectationsandprobabilities........................ 5 2 SimpleandMarkedPointProcesses.............................. 9 2.1 ThedefinitionofSPPsandMPPs ............................... 9 2.2 Countingprocessesandcountingmeasures ....................... 11 3 ConstructionofSPPsandMPPs................................. 17 3.1 CreatingSPPs ............................................... 17 3.2 CreatingMPPs............................................... 21 3.3 FromMPPstoPDPs .......................................... 25 4 CompensatorsandMartingales ................................. 33 4.1 Hazardmeasures ............................................. 33 4.2 Adaptedandpredictableprocesses .............................. 41 4.3 Compensatorsandcompensatingmeasures ....................... 50 4.4 Intensityprocesses ........................................... 63 4.5 Thebasicmartingales ......................................... 68 4.6 Stochasticintegralsandmartingales ............................. 77 4.7 Itoˆ’sformulaforMPPs ........................................ 85 4.8 Compensatorsandfiltrations ................................... 94 5 LikelihoodProcesses........................................... 103 5.1 Thestructureofthelikelihood..................................103 5.2 ConstructingRCMsfrommartingales ...........................110 vi Contents 6 Independence................................................. 119 6.1 Independentpointprocesses....................................119 6.2 Independentincrements,Le´vyprocesses .........................123 7 PDMPs ...................................................... 143 7.1 Markovprocesses ............................................143 7.2 Markovchains ...............................................146 7.3 ConstructionandbasicpropertiesofPDMPs......................152 7.4 ExamplesofPDMPs..........................................163 7.4.1 Renewalprocesses .....................................163 7.4.2 ProcessesderivedfromhomogeneousPoissonmeasures......165 7.4.3 APDMPthatsolvesanSDE.............................165 7.5 ThestrongMarkovproperty ...................................167 7.6 Itoˆ’sformulaforhomogeneousPDMPs ..........................170 7.7 Thefullinfinitesimalgenerator .................................177 7.8 Stationarity..................................................184 7.9 LikelihoodprocessesforPDMPs ...............................203 PartII Applications 8 SurvivalAnalysis.............................................. 217 8.1 Independentsurvivaltimes,right-censoring.......................217 8.2 TheCoxregressionmodel .....................................225 9 Branching,Ruin,Soccer ....................................... 231 9.1 Abranchingprocess ..........................................231 9.2 Ruinprobabilities ............................................235 9.3 Thesoccermodel ............................................243 10 AModelfromFinance ......................................... 247 10.1 Themodel ..................................................247 10.2 Portfoliosandself-financingstrategies...........................251 10.3 Arbitrageandmartingalemeasures..............................257 10.4 Contingentclaimsandpricing ..................................267 11 ExamplesofQueueingModels .................................. 277 11.1 TheGI/G/1queue ............................................277 11.2 Networkmodels .............................................287 PartIII Appendices A DifferentiationofCadlagFunctions .............................. 297 B Filtrations,Processes,Martingales ............................... 301 Contents vii BibliographicalNotes .............................................. 309 References ....................................................... 315 NotationIndex.................................................... 321 Index............................................................ 325 Preface Thebookaimsatpresentingadetailedandmathematicallyrigorousexpositionofthe theoryandapplicationsofaclassofpointprocessesandpiecewisedeterministicpro- cesses.Theframeworkissufficientlygeneraltounifythetreatmentofseveralclasses ofstochasticphenomena:pointprocesses,MarkovchainsandotherMarkovprocesses in continuous time, semi-Markov processes, queueing and storage models, and like- lihood processes. There are applications to finance, insurance and risk, population models,survivalanalysis,andcongestionmodels.Amajoraimhasbeentoshowthe versatilityofpiecewisedeterministicMarkovprocessesforapplicationsandtoshow howtheymayalsobecomeusefulinareaswherethusfartheyhavenotbeenmuchin evidence. Originallytheplanwastodevelopagraduatetextonmarkedpointprocessesin- dexed by time which would focus on probabilistic structure and be essentially self- contained. However, it soon became apparent that the discussion should naturally include a traditional class of continuous time stochastic processes constructed from certain marked point processes. This class consists of ‘piecewise deterministic pro- cesses’; that is, processes with finitely many jumps on finite time intervals which, roughlyspeaking,developdeterministicallybetweentherandomjumptimes.Theex- position starts with the point process theory and then uses this to treat the piecewise deterministicprocesses. Throughoutthefocusisconstructive,emphasizingcanonicalversions,whichoften meansthataprocessisdiscussedrelativetoitsownfiltration,ratherthanwithrespect to a general and larger filtration to which the process may be adapted. Many of the mainresultsareprovedwithinthiscanonicalsetting,whichmakesiteasiertodevelop theproofs.Butofcoursethesemainresultsthenappearonlyasspecialcasesofwell- established results from ‘the general theory of processes’; even so, we believe that by treating the canonical setup directly, additional insight into the structure of the processesisgained. Among the piecewise deterministic processes those that are Markov are espe- cially important, and they are also the ones treated most thoroughly in this book. The pioneering work here was done by Mark Davis and many of his results duly reappear here—but again, basing everything on marked point process theory leads x Preface to a somewhat different approach and to a very general construction of not only time-homogeneous piecewise deterministic Markov processes (the ones considered byDavis),butalsoofthosethatarenon-homogeneous. Thetextisdesignedforadvancedtopicscoursesorself-studybygraduatestudents who are at least in the fourth year of a European style degree program or at least in the second year of an American style Ph.D program. The text will also be useful to researchers specializing in the use of probabilistic models for point processes and piecewise deterministic processes. A course can easily be fashioned from selected partsofthebook,andwesuggestChapters2,3,4andSections7.1–Chapter7.This materialshouldbesupplementedbydiscussionofsomeofthemodelsandapplications treatedinPartII. The reader who wishes to master all details of the text will need a background inmeasure-theoreticprobabilitytheory.Readerswithanarrowerfoundationwillalso benefitfromreadingthebook.Shortintroductionstoeachchapter,apartfrompoint- ing to material that is considered essential, also list parts of the text (entire sections, technicalproofs,etc)thatmaybeomitted. Acknowledgements AninitialversionofthistextstartedaslecturenotesforagraduatecourseattheUni- versity of Copenhagen in 1995–1996 and went through successive revisions while lecturingatCopenhagen,theUniversityofAarhus(1998)andatChalmersUniversity of Technology and the University of Gothenburg (1999). Grateful acknowledgement is made to the University of Aarhus’ Centre for Mathematical Physics and Stochas- tics(MaPhySto,anetworkfundedbytheDanishNationalResearchFoundation),with specialthankstoOleBarndorff-Nielsen,thethendirectoroftheCentre.Manythanks also to Holger Rootze´n for arranging my stay at the Stochastic Centre at Chalmers UniversityofTechnologyandtheUniversityofGothenburgin1999andforthesup- portreceivedfromtheCentre. IamalsomuchindebtedtocolleaguesandstudentsinCopenhagenandelsewhere forstimulationandfeedbackwhichcontributedmuchtotheimprovementofthetext.I especiallythankJacobKrabbePedersen,nowattheUniversityofSouthernDenmark, whovoluntarilyundertookthehugetaskofconvertingthehandwrittenmanuscriptof theoriginalCopenhagennotesintoLATEX.Mygratitudetohim,BoMarkussenandAn- dersTolverJensen(bothfromCopenhagen)fortheirmanyinsightfulcomments,ques- tionsandsuggestions.IamalsoverygratefultoKasperLarsen,presentlyatCarnegie Mellon,forreading,commentingonandimprovingthesectiononfinance. Sid Resnick from Cornell University first encouraged me to write a book based on the MaPhySto lecture notes. I would like to thank him and also the anonymous reviewerswhoofferedmanyhelpfulsuggestions.Finally,manythanksareduetothe staffatBirkha¨userBoston,AnnKostantinparticular,fortheirhelpandpatienceduring theslowprogressofthisproject. MartinJacobsen Copenhagen,May2005 Point Process Theory and Applications

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.