ebook img

Point defects in silicon with a titanium disilicide film and vacancy/extrinsic dislocation loop interaction PDF

160 Pages·1996·5.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Point defects in silicon with a titanium disilicide film and vacancy/extrinsic dislocation loop interaction

POINTDEFECTSINSILICONWITHATITANIUMDISILICIDEFILMAND VACANCY/EXTRINSICDISLOCATIONLOOPINTERACTION By SCOTTBRADHERNER ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOLOFTHE UNIVERSITYOFFLORIDAINPARTL\LFULFILLMENTOFTHE REQUIREMENTSFORTHEDEGREEOFDOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1996 Copyright1996 by ScottBradHerner ACKNOWLEDGMENTS Thisdissertationwouldnothavebeenpossiblewithouthelpfrommany persons. Theauthoris indebted to his mentor at Bell Labs, Dr. Hans-J. Gossmann. Dr. Gossmann not only developed and grew the doping superlatticesamplesusedthroughoutthisstudy,butalsoprovidedmanykey ideas andmotivationforthis work. Duringtheauthor'stwovisits to Bell Labs(includingthefullsummerof1995),countlessphonecalls,andelectronic mail. Dr. Gossmann gave patient mentoring to a young scientist in many aspects, including lab techniques, the importance of quantifying error, RutherfordBackscattering,andsoon. Dr.Gossmanneditedalmostallofthe papersthatresultedfromthiswork,and,indoingso,taughttheauthorhow towriteascientificpaper. Dr. Gossmann showedremarkable patience and selflessnessthroughoutthis work. Thanksarealso dueto severalat Bell Labs, including Dr. John Poate, the chair of the Silicon Processing Department, Dr. Ray Tung, who performed the co-depositions. Dr. Conor Rafferty,whoallowedtheuseofhisPROPHETsimulationprogram,andDr. HenryLuftman,whoperformedtheSIMSanalysis. TheauthorthanksToshi MogiofCornellUniversity,whoalsoworkedatBellLabsonnitridefilmsand vacancydiffusivity,fornitridingmanysamplesandmanyhelpfuldiscussions. At the University of Florida (U.F.), the author is indebted to his advisor.Prof. KevinJones, forprovidingtheframeworkforthis project and allowingtheauthormuchlatitudeinthedirectionittook. Prof.Jones' iii enthusiasmformaterialsscienceandencouragementhelpedmemaintainmy motivationforthiswork. TheauthorexpresseshissincereappreciationtoDr. WishyKrishnamoorthyforhisfriendship andadvice. Wishyinstructedthe author in the use ofthe TEM and the high resolution X-ray system, and constantlyofferedmanytechniquesinTEMandphotoprintingfromhismany yearsexperience. Manyideas and approachesto this workwere generated withWishy, usuallyoverthe NYTimes crossword and coffee. Wishy also edited many of the papers that came out of this work, as well as this dissertation. TheauthorisgratefultothestaffattheMAICfacilityatU.F., particularly EricLambers forhishelp withtheAugermeasurements. The authoralso thankslab mates BrentGila andAnanthNaman forhelp and instructionontheAFM,andformakinglifeinsideandoutsidethelabmore enjoyable. The author is grateful to the members of my committee, particularlyProfs.MarkLawandStephenPearton, fortheirhelpwiththis dissertation. Theauthorsthankthe SEMATECHconsortium, the National Science Foundation, and Lucent Technologies, all ofwhich supported this work financially. Lastly, the author must also thank his parents, who continuedtosupportthe author'sfurthereducation andfortheirunflagging faithduringalongcollegecareer. iv TABLEOFCONTENTS ACKNOWLEDGMENTS iii LISTOFFIGURES vii LISTOFTABLES xii ..t ABSTRACT xiii CHAPTERS 1 INTRODUCTION 1 1.1 PointDefectsandDopantDiffusion 5 1.2 Surfacevs.BulkGenerationofPointDefectsin Silicon 9 1.3 ThinFilmsandPointDefects 12 1.4 ExtrinsicDislocationLoopsandPointDefects 20 1.5 Approach 23 2 SAMPLEPREPARATIONANDCHARACTERIZATION TECHNIQUES 25 2.1 DopingSuperlattices 25 2.2 TransmissionElectronMicroscopy 32 2.3 AugerElectronSpectroscopy 34 2.4 AtomicForceMicroscopy 34 2.5 RutherfordBackscatteringSpectroscopy 35 2.4 WaferCurvature 35 3 POINTDEFECTSINSILICONWITH ATITANIUMDISILICIDEFILM 37 3.1 Introduction 37 V 3.2 AntimonyandBoronDiffusioninSiliconwith 38 TitaniumasaFunctionofTemperature AnnealedforOneHour 3.3 SIMSArtifactsandChemo-Mechanical PolishingProcedure 49 3.4 AntimonyandBoronDiffusioninSiliconwitha 30nmTitaniumFilmAnnealedat800°C asaFunctionofTime 57 3.5 AntimonyandBoronDiffusioninSiliconwith DifferentThicknessesofTitanium DepositedandAnnealedforOneHourat 850°C 65 3.6 AntimonyandBoronDiffusioninSiliconAnnealed at850°CforOneHourwithCo-Deposited Ti+SiorCo+Si 74 3.7 Morphologyofthefilmsfromco-deposition 79 3.8 Summary 96 4 BEHAVIOROFEXTRINSICDISLOCATIONLOOPS INSILICONANNEALEDWITHATITANIUM DISILICIDEORSILICONNITRIDEFILM 97 4.1 Introduction 97 4.2 AntimonyandBoronDiffusionBehaviorin Ge'''-implantedSiliconAnnealedinNH3 98 4.3 DislocationLoopBehaviorinSiliconwith aThermallyGrownSiliconNitrideFilm 105 4.4 DislocationLoopBehaviorinSiliconwith aTitaniumDisilicideFilm 121 4.5 Summary 129 5 CONCLUSIONSANDRECOMMENDATIONS 130 5.1 Conclusions 130 5.2 FutureWork 134 REFERENCES 137 BIOGRAPHICALSKETCH 144 vi 1 LISTOFFIGURES Figure page 1.1 SchematicofaCMOSFET 2 1.2 Variousdiffusionmodesinsilicon: (a)interstitial;(b)interstitialcyor"kickout;" and(c)vacancy 7 1.3 Estimatesof(a)C*;and(b)C*D*values 1 2.1 Diffusivitiesasafunctionoftemperatureanddoping levelof(a)antimony;and(b)boron. Theextrinsic diffusivitiesassumeadopinglevelof1xlO^O/cm^ 28 3.1 CrosssectionalTEMmicrographofTiSi2/TiOxNi.x filmsonsiliconannealed840°C/1hr/forminggas 41 3.2 ElectrondiffractionpatternofTiSi2/TiOxNi.xfilms onsiliconannealed840°C/1hr/forminggas 41 3.3 Augerspectraofthesampleannealed 800°C/1hr/forminggas 42 3.4 SIMSdepthprofilesofdopingsuperlatticesannealed 840°C/1hr/forminggas.(a)antimony;and(b)boron 44 3.5 Depthprofilesofnormalizedantimonyandboron diffusivitiesindopingsuperlatticesannealedfor onehouratvarioustemperatures 45 3.6 Comparisonofintrinsicdiffusivitiesfromthedoping superlatticesandliteraturevalues 48 vii 111 3.7 AFMmicrographoftheunderlyingsiliconsurfaceafter 30nmTideposition,800°C/1hr/forminggasanneal,and removalofthefilmbychemicaletching. Therootmean squareroughnessis22.0nm 5 3.8 SIMSborondepthprofilefi-omtheunpohshedsample annealed800°C/1hr/forminggas:(a)complete (SilostisfromTiSi2growthandconsequentetching); and(b)detailfi-omfigure3.3a 52 3.9 AFMmicrographoftheunderlyingsiliconsurfaceafter 30nmTideposition,800°C/1hr/forminggasanneal, removalofthefilmbychemicaletching,andCMP. The rootmeansquareroughnessis0.1nm 53 3.10 CrosssectionalTEMmicrographofdislocationloop layerpriortoCMP:(a)beforeCMP:and(b)afterCMP 56 3.11 SihconremovalratewithCMP 56 3.12 CrosssectionalTEMmicrographofTiSi2/TiOxNi.xfilms onsiliconannealed800°C/600min/argon 59 3.13 CrosssectionalTEMmicrographofTiSi2/TiOxNi.xfilms onsiliconannealed800°C/15min/argon 59 3.14 SIMSdepthprofilesofantimonydopingsuperlattices annealed800°C/60min/argon 60 3.15 SIMSdepthprofilesofantimonydopingsuperlattices annealed800°C/600min/argon 60 3.16 Depthprofilesofnormalizedantimonydiffusivities indopingsuperlatticeswith30nmoftitanium annealedat800°Cforvarioustimes 6 3.17 Averagenormalizedantimonydiffusivities indopingsuperlatticeswith30nmoftitanium annealedat800°Cforvarioustimes 6 3.18 Gaussiandepthprofileofvacanciesassumingafinite "pulse"ofvacanciesinjectedatt=0 64 viii 3.19 RBSspectra(glancingangle)fortheco-deposited TiSii.8filmwithnominal312nmTithickness beforeanneahng 67 3.20 RBSspectra(glancingangle)fortheco-deposited TiSii.8filmwithnominal4nmTithickness beforeanneahng 67 3.21 CrosssectionalTEMmicrographoftheannealedTiSii.g filmwithnominal4nmTithickness 3.22 CrosssectionalTEMmicrographoftheannealedTiSii.s filmwithnominal312nmTithickness 3.23 SIMSdepthprofilesofdopingsuperlatticesannealed 850°C/1hr/argonwithnominal4nmTi (a)antimony;and(b)boron 3.24 Depthprofilesofnormalizedantimonydiffusivities indopingsuperlatticesannealed850°C/1hr/argon withvariousthicknessesofTi 3.25 Averagenormalizedantimonydiffusivitiesindoping superlatticesannealed850°C/1hr/argonwith variousthicknessesofTi 3.26 SIMSdepthprofilesinsilicondopingsuperlattices annealed850°C/1hr/argonwith22nmTi: (a)antimony;and(b)boron 3.27 Depthprofilesofnormalizedantimonyandboron diffusivitiesindopingsuperlatticesannealed 850°C/1hr/argon 77 3.28 CrosssectionalTEMmicrographoftheas-deposited Ti(only)filmonsilicon ^2 3.29 AugerelectronspectraoftheannealedTiSig.sfilm ®^ 3.30 AugerelectronspectraoftheannealedTiSi2.2film 3.31 AugerelectronspectraoftheannealedCoSio.8film ®^ ix 3.32 CrosssectionalTEMmicrographoftheannealedCoSio.8 filmonsiUcon 84 3.33 CrosssectionalTEMmicrographsoftheannealedfilms: (a)Ti(only)film;(b)TiSio.8film;and(c)TiSi2.2film 86 3.34 AFMmicrographoftheunderlyingsiliconsurface afterdepositionofTiSio.8(30nmnominalTithickness), annealedat850°/lhr/argon,andchemicallyetching offthefilm 88 3.35 PlanviewTEMmicrographsoftheannealedfilms ontheTi(only)sample:(a)TiOxNi-xfilm; and(b)TiSi2film 89 3.36 PlanviewTEMmicrographsoftheannealedfilms ontheannealedTiSi2.2sample:(a)polySifilm; and(b)TiSi2film 90 3.37 SchematiccrosssectionoftheplanviewTEMsample 92 4.1 SIMSdepthprofilesofdopingsuperlatticesannealed withoutanimplant,(a)antimony;and(b)boron 100 4.2 SIMSdepthprofilesofdopingsuperlatticesannealed withanimplant,(a)antimony;and(b)boron 102 4.3 Normalizedantimonydiffusivitiesinloopsamples withanneal#2inNH3 104 4.4 CrosssectionalTEM(brightfield,g22o)micrograph ofthelooplayerandsiliconnitridefilm 104 4.5 CrosssectionalhighmagnificationTEM(brightfield, g22o)micrographofthesiliconnitridefilm. Samplehas beenannealed910°C/3hrs/NH3 108 4.6 PlanviewTEM(weakbeamdarkfield,g22o) micrographsofsamplesannealedinvariousconditions, (a)910°C/0.5hr/Ar;(b)910°C/3hrs/Ar; (c)910°C/0.5hr/NHa;and(d)910°/3hrs/NHa 109 4.7 Sizedistributionsoftheloopsinsamplesannealedin argon,(a)810°C;and(b)910°C Ill X

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.