ebook img

Please use crop marks to align pages *** NOTE TO PUBLISHER OF Particle Physics Booklet PDF

154 Pages·2016·3.67 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Please use crop marks to align pages *** NOTE TO PUBLISHER OF Particle Physics Booklet

***NOTETOPUBLISHEROFParticlePhysicsBooklet*** Pleaseusecropmarkstoalignpages September29,2016 18:25 2 PARTICLEPHYSICSBOOKLETTABLEOFCONTENTS 1.Physicalconstants . . . . . . . . . . . . . . . . . . 4 2.Astrophysicalconstants . . . . . . . . . . . . . . . . 6 SummaryTablesofParticlePhysics GaugeandHiggsbosons . . . . . . . . . . . . . . . . 8 Leptons . . . . . . . . . . . . . . . . . . . . . . 14 Quarks . . . . . . . . . . . . . . . . . . . . . . 23 Mesons . . . . . . . . . . . . . . . . . . . . . . 25 ∗ Baryons . . . . . . . . . . . . . . . . . . . . . 159 Searches . . . . . . . . . . . . . . . . . . . . . . 188 ∗ Testsofconservationlaws . . . . . . . . . . . . . . 193 Reviews,Tables,andPlots ∗ 9.Quantumchromodynamics . . . . . . . . . . . . . 196 ∗ 10.Electroweakmodelandconstraintsonnewphysics . . 200 ∗ 11.StatusofHiggsbosonphysics . . . . . . . . . . . . 209 ∗ 12.TheCKMquark-mixingmatrix . . . . . . . . . . . 211 13.CP violation∗ . . . . . . . . . . . . . . . . . . . 218 ∗ 14.Neutrinomass,mixingandoscillations . . . . . . . . 221 ∗ 15.Quarkmodel . . . . . . . . . . . . . . . . . . . 228 ∗ 16.Grandunifiedtheories . . . . . . . . . . . . . . . 231 ∗ 19.Structurefunctions . . . . . . . . . . . . . . . . 237 ∗ 22.Big-bangcosmology . . . . . . . . . . . . . . . . 242 ∗ 23.Inflation . . . . . . . . . . . . . . . . . . . . . 248 ∗ 25.Thecosmologicalparameters . . . . . . . . . . . . 249 ∗ 26.Darkmatter . . . . . . . . . . . . . . . . . . . 253 ∗ 27.Darkenergy . . . . . . . . . . . . . . . . . . . 256 ∗ 28.Cosmicmicrowavebackground . . . . . . . . . . . 257 ∗ 29.Cosmicrays . . . . . . . . . . . . . . . . . . . 260 ∗ 30.Acceleratorphysicsofcolliders . . . . . . . . . . . 261 ∗ 31.High-energycolliderparameters . . . . . . . . . . . 262 ∗ 33.Passageofparticlesthroughmatter . . . . . . . . . 263 ∗ 34.Particledetectorsataccelerators . . . . . . . . . . 278 ∗ 35.Particledetectorsfornon-acceleratorphysics . . . . . 290 ∗ 36.Radioactivityandradiationprotection . . . . . . . . 297 37.Commonlyusedradioactivesources . . . . . . . . . . 299 ∗ 38.Probability . . . . . . . . . . . . . . . . . . . . 301 ∗ 39.Statistics . . . . . . . . . . . . . . . . . . . . . 305 44.Clebsch-Gordancoefficients,sphericalharmonics, anddfunctions . . . . . . . . . . . . . . . . . . 319 ∗ 47.Kinematics . . . . . . . . . . . . . . . . . . . . 321 ∗ 49.Cross-sectionformulaeforspecificprocesses . . . . . 330 ∗ 50.Neutrinocross-sectionmeasurements . . . . . . . . 335 ∗ 51.Plotsofcrosssectionsandrelatedquantities . . . . . 337 ∗ 6.Atomicandnuclearpropertiesofmaterials . . . . . . 338 4.Periodictableoftheelements . . . . . . insidebackcover ∗ AbridgedfromthefullReviewofParticlePhysics. ***NOTETOPUBLISHEROFParticlePhysicsBooklet*** Pleaseusecropmarkstoalignpages September29,2016 18:25 ***NOTETOPUBLISHEROFParticlePhysicsBooklet*** Pleaseusecropmarkstoalignpages September29,2016 18:25 3 ThefollowingarefoundonlyinthefullReviewandontheWeb: http://pdg.lbl.gov 3.InternationalSystemofUnits(SI) 5.Electronicstructureoftheelements 7.Electromagneticrelations 8.Namingschemeforhadrons 17.Heavy-quark&soft-collineareffectivetheory 18.Latticequantumchromodynamics 20.Fragmentationfunctionsine+e−,epandppcollisions 21.Experimentaltestsofgravitationaltheory 24.Big-bangnucleosynthesis 32.Neutrinobeamlinesatprotonsynchrotrons 40.MonteCarlotechniques 41.MonteCarloeventgenerators 42.MonteCarloneutrinoeventgenerators 43.MonteCarloparticlenumberingscheme 45.SU(3)isoscalarfactorsandrepresentationmatrices 46.SU(n)multipletsandYoungdiagrams 48.Resonances ***NOTETOPUBLISHEROFParticlePhysicsBooklet*** Pleaseusecropmarkstoalignpages September29,2016 18:25 * * * * * * N N O O P P T T l l eE eE a a 4 sT Table1.1. Reviewed2015byP.J.MohrandD.B.Newell(NIST).Thesetofconstantsexcludingthelastgroup(whichcomefromtheParticle sT e e O Data Group) is recommended by CODATA for international use. The 1-σ uncertainties in the last digits are given in parentheses after the 1 O u values. SeethefulleditionofthisReview forreferencesandfurtherexplanation. .P u sP h sP e ys e cU Quantity Symbol,equation Value Uncertainty(ppb) ica cU ropBL Psplaeendckofcolingshttanintvacuum hc 62.96926790270450840m(8s1−)1×10−34Js exac1t2∗ lcons ropBL maISH ePlleacntrcokncochnastragnetm,raegdnuictuedde e~≡h/2π 11..=0650642.551877216186102900(851(1394)8(×)4×01)01×0−−134019−JC22s=M4eV.80s3204673(30)×10−10esu 6.1,661..121 tants maISH rkE conversionconstant ~c 197.3269788(12)MeVfm 6.1 rkE sR conversionconstant (~c)2 0.3893793656(48)GeV2 mbarn 12 sR toaOF pelreocttornonmmasasss mmpe 903.581.20792980891436(15(83)1M)MeVe/Vc/2c2==1.96.7120962318389586((2111))××1100−−2371kkgg 66..22,,1122 toaOF l =1.007276466879(91)u=1836.15267389(17)me 0.090,0.095 l ignPa udneuifiteerdoantmomasicsmassunit(u) m(mdass12Catom)/12=(1g)/(NAmol) 913817.54.964120992584((1527))MMeeVV//cc22=1.660539040(20)×10−27kg 6.2,61.22 ignPa prt permittivityoffreespace ǫ0=1/µ0c2 8.854187817...×10−12Fm−1 exact prt aic permeabilityoffreespace µ0 4π×10−7NA−2 =12.566370614...×10−7NA−2 exact aic gele fine-structureconstant α=e2/4πǫ0~c 7.2973525664(17)×10−3=1/137.035999139(31)† 0.23,0.23 gele sP classicalelectronradius re=e2/4πǫ0mec2 2.8179403227(19)×10−15m 0.68 sP Septemb hys B(weao−vherCleronamdgtipuhtsoon(fmw1naeuvVcele/luecsnpg=athr∞t)i/c)2leπ a−hλ∞ce/=(=1~e4/Vπmǫ)0e~c2=/mreeαe2−1=reα−2 103...258326991815479172926717306946((771(681))2××)11×001−−061−3m1m0m 006..24.135 Septemb hys er1 ic Rydbergenergy hcR∞=mee4/2(4πǫ0)2~2=mec2α2/2 13.605693009(84)eV 6.1 er1 ic 0, s Thomsoncrosssection σT =8πre2/3 0.66524587158(91)barn 1.4 0, s 20 B 20 B 1 1 6 6 o o 18 o 18 o :21 k :21 k l l e e t t * * * * * * * * * * * * N N O O P P T T l l eE eE a a seTO nBuochlreamramgangentoenton µµNB==ee~~//22mmep 35..17582843581128505102((1256))××1100−−1141MMeeVVTT−−11 00..4465 seTO usePU pelreocttornoncyccylcoltortornonfrferqe.q/.fi/efiledld ωωccpeyyccll//BB==ee//mmpe 91..577588883230202264((5191))××1100711raradds−s−11TT−−11 66..22 usePU c c rB gravitationalconstant‡ GN 6.67408(31)×10−11m3kg−1s−2 4.7×104 rB o =6.70861(31)×10−39~c(GeV/c2)−2 4.7×104 o pL pL mIS standardgravitationalaccel. gN 9.80665ms−2 exact mIS arkHE ABovlotgzamdarnoncocnosntsatnatnt NkA 16..=3082802.6611447803583250(737((975)40×))×1×0110−022−335mJeoVKl−−K11−1 55177200 arkHE sR molarvolume,idealgasatSTP NAk(273.15K)/(101325Pa) 22.413962(13)×10−3m3 mol−1 570 sR toO WSteiefannd-Bisoplltazcmemanenntcloanwstcaonntstant bσ==λπm2ka4x/T60~3c2 52..687907376772(91(31)7×)×1010−−83WmmK−2K−4 2350700 toO aF aF lignPar WwFeer±amkb-imocsoioxunipnlgminaagnsscgolenstant∗∗ mGsinFW2/θb((~Mc)Z3)(MS) 8100..12.363861532(7918(55)7)G†(†6e)V×/1c02−5GeV−2 12..92××511000055 1. lignPar pageticle sZt0robnogsoconumplainπssg=co3n.s1t4a1nt592653589αms7Z(9m3Z2)38 e=2.7182818284095.119.110884275(61(2223)15)GeV/c2 γ=0.577215664901532861 12..03××110074 Physical pageticle sP 1in≡0.0254m 1G≡10−4T 1eV=1.602 176 6208(98)×10−19J kT at300K=[38.681 740(22)]−1eV co sP September10,2016 hysicsB ∗∗†∗1ATSbth1eaeQer˚Anmt2h≡≡e=ete01d0r.0i.1si−csAn2ut8tmshsQmeio22lne≈ni1ngmt1dShy2Weeoncrfg.ett1h≡≡h0ee,11v“00paE−−alutl75ehecJNtitsrroa∼2wv.e9e1la9e/k7d12mb98y2o.4dli•eg5lh‡8at×Anidn1b1s0cevoo9Valnuc/esutscteuu2rmal==ainbdt11ums.7Croei8nna2gsnu6aer6wet1mimpe9hne0yt7iss(ni1cot1esf.r)”Gv×aNl1o0hf−a13v/61e2kba9gte9me7no9sm2pah4de5re8eoo≡nfla7y6so0enc0Toson◦crCdarl.e≡≡so12f0713a.b13o52u5KtP1acmto1m. nstants5 September10,2016 hysicsB 18 oo †† Thecorrespondingsin2θfortheeffectiveangleis0.23155(5). 18 oo :21 k :21 k l l e e t t * * * * * * * * * * * * N N O O P P T 2.ASTROPHYSICALCONSTANTSANDPARAMETERS 6 T l l eE Table2.1. RevisedMarch2016byD.E.Groom(LBNL).Figuresinparenthesesgive1-σuncertaintiesinlastplace(s). Thistablerepresentsneither eE a acriticalreviewnoranadjustmentoftheconstants,andisnotintendedasaprimaryreference. SeethefullReviewforreferencesanddetails. 2. a seT Quantity Symbol,equation Value Reference,footnote As seT uO speedoflight c 299792458ms−1 exact[4] tro uO secropPUBL jsPPNatlleanaawnsnnkdtccyoakknr(lmdifleanuanagsxcsctchodenleensrtsaaittniyot)nofofgrgarvaivtiattyion GgppJNyN~~cG/NG/Nc3 11961....0=6286−12072260646.29601W2158790(6m3((4m3217s89)−−())×522××)H1×110z00−−1−1101913−5G8mmek3Vgk/gc−21s−2 de[[[xe111afi]]]cnti[t1io]n physicalcons secropPUBL mIS tsridoepriecaallyyeeaarr((fieqxuedinostxartotoeqfiuxiendoxs)ta(r2)01(210)11) yr 3311555568912459..28ss≈≈ππ××110077ss [[55]] tants mIS aH meansiderealday(2011)(timebetweenvernalequinoxtransits) 23h56m04.s09053 [5] aH rkE astronomicalunit au 149597870700m exact[6] rkE sR pliagrhstecye(a1ra(ud/e1praerccatseedc)unit) plyc 30..038056667.7..5p81c4=9×0.914061605m3.=..3×.2160216..m.ly exact[7] sR toO SScohlawramrzasscshildradiusoftheSun M2G⊙NM⊙/c2 21..99583824580(92)4×k1m030kg [[89]] toO aF nominalSolarequatorialradius R⊙ 6.957×108m exact[10] aF ligP nSochmwinarazlsScholialdrrluamdiiunsoosiftytheEarth L2G⊙NM⊕/c2 38..8827800×561052860(W18)mm e[x1a3c]t[10,12] ligP na Earthmass M⊕ 5.9724(3)×1024kg [14] na r nominalEarthequatorialradius R⊕ 6.3781×106m exact[10] r pageticle flluumxincoonsivteyrscioonnversion LF (Mbol=32a..05b11s2o88l0u××te11b00o2−l8o8×m×e11t0r0−i−c00.m.44aMmgbnbooiltluWWdem=−b2olometricmagnitude[[11a55t]]10pc) pageticle sSep Ph ABsolutemonochromaticmagnitude AB (mbol=−a2p.p5a=lroegn−1t02b.f5oνllo−omg51e60t.rf1iνc0+m(foa8rg.9nf0iνt(uifdnoreW)fνmin−2JHy)z−1) [16] sSep Ph temb ys SSoollaarrdanisgtuanlacrevferloomcitGyaalraocutincdcethnteeGralacticcenter RΘ00/R0 380.0.30±±00..925kkmpcs−1kpc−1 [1[177,1]8] temb ys er29,2016 icsB cellooisrccccaaaullplddeariavsrkvekleodlmoceicnatiysttitytefyrraotdmeRnG0siatlyaxy vvρρ0edχsiocskrΘ0 canonic243a59–l481v(2ak1l×mu6)e1/k00s−m.3<24sG−vge1eVsccm/c<−236c0m≈8−2k3–m7w/iGstheiVn/fca2ctcomr−23–3 [[[[11229701]]]] er29,2016 icsB o o 18 o 18 o :30 k :30 k l l e e t t * * * * * * * * * * * * N N O O P P T T l l eE eE a a sT pprreesseennttddaayyCCMMBBtdeimpopleeraamtuprleitude T0 23..73265455((62)0)KmK [[2222,,2243]] sT eO SolarvelocitywithrespecttoCMB 369(1)kms−1towards(ℓ,b)=(263.99(14)◦,48.26(3)◦) [22,25] eO usP nLuomcableGrrdoeunpsivtyeloocfiCtyMwBithphroetsopnescttoCMB vnLγG 627(42120).7k(mT/s2−.712t5o5w)3arcdms−(3ℓ,b)=(276(3)◦,30(3)◦) [2[226,2]5] usP e entropydensity/Boltzmannconstant s/k 2891.2(T/2.7255)3cm−3 [26] e cU presentdayHubbleexpansionrate H0 100hkms−1Mpc−1=h×(9.777752Gyr)−1 [27] cU rB scalefactorforHubbleexpansionrate h 0.678(9) [2,3] rB o Hubblelength c/H0 0.9250629×1026h−1m=1.374(18)×1026m o pmLIS sccraitliecafalcdteonrsfiotyrcoofstmheolUogniicvaelrcseonstant cρ2cr/i3tH=023H02/8πGN 21..=8857128.440705(×397)11×0(5511)0h×−−21290m−h522hg=2c6m(.G2−0e3(V1/7c)2×)c1m05−13m2 pmLIS aH =2.77537(13)×1011h2M⊙Mpc−3 aH rkstER bnCuaMrmyBbonerr-atddoie-apnthsioiotntyodonefrnbasatitiroyyo(onffrsotmheBUBnNiv)erse ηnΩbγ==nbρ/γn/γρcrit (2(252..54..840733××(×2116001)−−0×−17051<(≤0T−n/η7b2c≤.<7m262−5..6357)××41h10−0−2−17=0)(c59m.53%−8(31C(59L)5)×%10C−L5) [η2[[22×,386,n]]2γ9,30] rkstER oaliOFP rbc1eo0ail0rodyn×odiznaaardtpkieponmrnsoaixottypttteooircfradt∗leh/ndeDseiUpAttynhiovfertsheeuniverse τ1ΩΩ0bc0d=m×ρ=θbM/ρCρcdcrmit/ρcrit‡‡‡‡1000....001042161286026(1(6(526()02))3)hh−−22==††00.2.05488(141(1)0) [[22[[22,,33,,33,,22]]33]] oaliOFP gnar slncaplawrrsppreicmtroarldiinadlecxurvaturepert.(k0=0.05Mpc−1) nlns(1010∆2R) ‡‡03..906682((62)9) [[22,,33]] 2. gnar pagesSeptember29,2016 ticlePhysicsBo dpflrarescnrdteueeuffugareaunddmenrueerrcssssvkkcnttooshhatruioufreeiiniitavnfff-rnnugttttteeonheerioloaoesrreene-dpggftnsusueUcyyesmthmnaacrnmadesmitlabnaliqiretfvtaearpountyetrrlelasfitriemrioitoetseit-nuirefofrlayodddanstndneodhseiepezxefieounaaaestfststrttUhlriitisootoi8euntnypnnarihoΛvebto−se,eeCafqr1ktpDstui0ehMoaaMenr=lpaistUmcUy0rn.aesn0icttiv0ievaoe2relr,erMskseeΩ0p=νc−0=.10h02−2MPΩpΩσztzPdΩwN0ercnmm8ΛKeeq−siffmoν/=1njdν/Ωl9rnc3kd=.0m4T+e/VΩSb ††††††♯♯♯♯♯♯0003183<<−−<−...33..0006388106.00...9018+−.±5009..6285001110078±11..0±±±±5347±64e.(+−46V10000(a40005....P..t.000000()0l1104P119a5762295lnGa%(cny9kcr5CkC%LMCC;MLBno);B≥r)u;0n≥.n0i00n.1g025(emVix(imngix)ing) [[[22[[[[[[[[[[32222222222,,133,,,]],]]],33333,443]]]3],,633]]55]] Astrophysicalconstants7 pagesSeptember29,2016 ticlePhysicsBo 18 o 18 o :30 k :30 k l l e e t t * * * * * * *** NOTE TO PUBLISHER OF Particle Physics Booklet *** Please use crop marks to align pages September22,2016 16:33 Tests of Conservation Laws 111199993333 TESTS OF CONSERVATION LAWS UpdatedJune2016byL.Wolfenstein(Carnegie-MellonUniversity) and C.-J. Lin(LBNL). Inthefollowingtext,welistthebestlimitsfromtheTestofConser- vation Laws table from the full Review of Particle Physics. Com- plete details are in that full Review. Limits in this text are for CL=90% unless otherwise specified. The Table is in two parts: “Discrete Space-Time Symmetries,” i.e., C, P, T, CP, and CPT; and “Number Conservation Laws,” i.e., lepton, baryon, hadronic flavor, and charge conservation. The references for these data can befoundinthetheParticleListingsintheReview. Adiscussion of these tests follows. CPT INVARIANCE General principles of relativistic field theory require invariance un- derthecombinedtransformationCPT. ThesimplesttestsofCPT invariance arethe equality ofthe masses and lifetimes of a particle anditsantiparticle. Thebesttestcomesfromthelimitonthemass difference between K0 and K0. Any such difference contributes to the CP-violating parameter ǫ. CP AND T INVARIANCE Given CPT invariance, CP violation and T violation are equiv- alent. The original evidence for CP violation came from the measurement of |η+−| = |A(KL0 → π+π−)/A(KS0 → π+π−)| = (2.232±0.011)×10−3. ThiscouldbeexplainedintermsofK0–K0 mixing, which also leads to the asymmetry [Γ(K0 → π−e+ν)− L Γ(K0 →π+e−ν)]/[sum]=(0.334±0.007)%. EvidenceforCP vio- L lationinthekaondecayamplitudecomesfromthemeasurement of (1−|η00/η+−|)/3=Re(ǫ′/ǫ)=(1.66±0.23)×10−3. In the Stan- dard Model much larger CP-violating effects are expected. The first of these, which is associated with B–B mixing, is the param- eter sin(2β) now measured quite accurately to be 0.679±0.020. A number of other CP-violating observables are being measured in B decays; direct evidence for CP violation in the B decay am- plitude comes from the asymmetry [Γ(B0 → K−π+)−Γ(B0 → K+π−)]/[sum] = −0.082±0.006. Direct tests of T violation are much more difficult; a measurement by CPLEAR of the difference between the oscillation probabilities of K0 to K0 and K0 to K0 is related to T violation [3]. A nonzero value of the electric dipole *** NOTE TO PUBLISHER OF Particle Physics Booklet *** Please use crop marks to align pages September22,2016 16:33 *** NOTE TO PUBLISHER OF Particle Physics Booklet *** Please use crop marks to align pages September22,2016 16:33 111199994444 Tests of Conservation Laws moment of the neutron and electron requires both P and T vio- lation. The current experimental results are < 3.0×10−26 e cm (neutron), and<8.7×10−29 e cm(electron) atthe90%C.L.The BABARexperimentreportedthefirstdirectobservationofT viola- tionin theB system. The measured T-violating parameters in the time evolution of the neutral B mesons are ∆S+ = −1.37±0.15 T and ∆S− = 1.17±0.21, with a significance of 14σ [4]. This ob- T servation ofT violation,with exchange ofinitialandfinal states of theneutralB,wasmadepossibleinaB-factoryusingtheEinstein- Podolsky-RosenEntanglementofthetwoB’sproducedinthedecay oftheΥ(4S)andthetwotime-ordereddecaysoftheB’sasfiltering measurements of the meson state [5]. CONSERVATION OF LEPTON NUMBERS Presentexperimentalevidenceandthestandardelectroweaktheory areconsistent withthe absoluteconservation of threeseparate lep- tonnumbers: electronnumberLe,muonnumberLµ,andtaunum- ber Lτ, except for the effect of neutrino mixing associated with neutrino masses. Searches for violations are of the following types: a) ∆L =2 for one type of charged lepton. The best limit comesfromthesearchforneutrinoless doublebetadecay(Z,A)→ (Z+2,A)+e−+e−. Thebestlaboratorylimitist1/2 >1.07×1026 yr (CL=90%) for136Xe fromthe KamLAND-Zenexperiment [6]. b) Conversion of one charged-lepton type to another. For purely leptonic processes, the best limits are on µ → eγ and µ → 3e, measured as Γ(µ→eγ)/Γ(µ→all) < 5.7×10−13 and Γ(µ → 3e)/Γ(µ→all)<1.0×10−12. c) Conversion of one type of charged lepton into an- other type of charged antilepton. The case most studied is µ−+(Z,A)→e++(Z−2,A),thestrongestlimitbeingΓ(µ−Ti→ e+Ca)/Γ(µ−Ti→all)<3.6×10−11. d) Neutrino oscillations. It is expected even in the standard electroweaktheorythattheleptonnumbersarenotseparatelycon- served, as a consequence of lepton mixing analogous to Cabibbo- Kobayashi-Maskawa quark mixing. However, if the only source of lepton-number violation is the mixing of low-mass neutrinos then processes such as µ → eγ are expected to have extremely small *** NOTE TO PUBLISHER OF Particle Physics Booklet *** Please use crop marks to align pages September22,2016 16:33 *** NOTE TO PUBLISHER OF Particle Physics Booklet *** Please use crop marks to align pages September22,2016 16:33 Tests of Conservation Laws 111199995555 unobservable probabilities. For small neutrino masses, the lepton- number violation would be observed first in neutrino oscillations, which have been the subject of extensive experimental studies. CONSERVATION OF HADRONIC FLAVORS In strong and electromagnetic interactions, hadronic flavor is conserved, i.e. the conversion of a quark of one flavor (d,u,s,c,b,t) into a quark of another flavor is forbidden. In the Standard Model, the weak interactions violate these conservation laws in a manner described by the Cabibbo-Kobayashi-Maskawa mixing (see the section “Cabibbo-Kobayashi-Maskawa Mixing Ma- trix”). The way in which these conservation laws are violated is tested as follows: (a)∆S=∆Qrule. Inthestrangeness-changingsemileptonicdecay of strange particles, the strangeness change equals the change in charge of the hadrons. Tests come from limits on decay rates such as Γ(Σ+ →ne+ν)/Γ(Σ+ →all) < 5×10−6, and from a detailed analysis of KL →πeν, which yields the parameter x, measured to be(Rex,Imx)=(−0.002±0.006,0.0012±0.0021). Corresponding rules are∆C = ∆Q and∆B = ∆Q. (b) Change of flavor by two units. IntheStandardModelthis occursonlyinsecond-order weak interactions. The classic example is ∆S = 2 via K0 −K0 mixing. The ∆B = 2 transitions in the B0 and B0 systems via mixing are also well established. There is s nowstrongevidenceof∆C=2transitioninthecharmsector. with themass difference Allresults areconsistent with thesecond-order calculations in the StandardModel. (c) Flavor-changing neutral currents. In the Standard Model the neutral-current interactions do not change flavor. The low rate Γ(K → µ+µ−)/Γ(K → all) = (6.84±0.11)×10−9 puts limits L L onsuchinteractions;thenonzerovalueforthisrateisattributedto a combination of the weak and electromagnetic interactions. The best test should comefromK+→π+νν. The LHCbandCMS ex- periments have recently observed theFCNC decay ofB0→µ+µ−. s The current world average value is Γ(B0 →µ+µ−)/Γ(B0→all)= s s (2.9+0.7)×10−9, which is consistent with the Standard Model ex- −0.6 pectation. SeethefullReviewofParticlePhysicsforreferencesandSummaryTables. *** NOTE TO PUBLISHER OF Particle Physics Booklet *** Please use crop marks to align pages September22,2016 16:33 ***NOTETOPUBLISHEROFParticlePhysicsBooklet*** Pleaseusecropmarkstoalignpages September26,2016 15:58 196 9.Quantumchromodynamics 9.QUANTUMCHROMODYNAMICS Revised September 2015 (April 2016 for section on αs) by S. Bethke (Max-Planck-Institute of Physics, Munich), G. Dissertori (ETH Zurich), andG.P.Salam(CERN). 9.1. Basics Quantum Chromodynamics (QCD), the gauge field theory that describesthestronginteractionsofcoloredquarksandgluons,istheSU(3) componentoftheSU(3)×SU(2)×U(1)StandardModelofParticlePhysics. TheLagrangianofQCDisgivenby X 1 L= ψ¯q,a(iγµ∂µδab−gsγµtCabACµ −mqδab)ψq,b−4FµAνFAµν, (9.1) q whererepeatedindicesaresummedover. TheγµaretheDiracγ-matrices. Theψq,a arequark-fieldspinorsforaquarkofflavorq andmassmq,with acolor-indexathatrunsfroma=1toNc=3,i.e. quarkscomeinthree “colors.” Quarksaresaid to be in the fundamental representationof the SU(3)colorgroup. The AC correspond to the gluon fields, with C running from 1 to µ N2−1=8, i.e. there are eight kinds of gluon. Gluons transform under c the adjoint representation of the SU(3) color group. The tC correspond ab toeight3×3matricesandarethegeneratorsoftheSU(3)group(cf. the section on “SU(3) isoscalar factors and representation matrices” in this ReviewwithtC ≡λC/2). Theyencodethefactthatagluon’sinteraction ab ab withaquarkrotatesthequark’scolorinSU(3)space. Thequantitygs is theQCDcouplingconstant. Finally,thefieldtensorFµAν isgivenby FµAν =∂µAAν −∂νAAµ −gsfABCABµACν [tA,tB]=ifABCtC, (9.2) wherethefABC arethestructureconstantsoftheSU(3)group. Neither quarks nor gluons are observed as free particles. Hadrons are color-singlet(i.e. color-neutral)combinations of quarks, anti-quarks, and gluons. Ab-initio predictive methods for QCD include lattice gauge theory andperturbativeexpansionsinthecoupling. TheFeynmanrulesofQCD involve a quark-antiquark-gluon (qq¯g) vertex, a 3-gluon vertex (both proportionalto gs), and a 4-gluonvertex(proportionalto gs2). A full set ofFeynmanrulesistobefoundforexampleinRef.1. Useful color-algebra relations include: tAabtAbc = CFδac, where CF ≡ (Nc2−1)/(2Nc)=4/3isthecolor-factor(“Casimir”)associatedwithgluon emissionfrom a quark; fACDfBCD =CAδAB whereCA≡Nc=3 is the color-factorassociatedwithgluonemissionfromagluon;tAabtBab=TRδAB, whereTR=1/2isthecolor-factorforagluontosplittoaqq¯pair. ThefundamentalparametersofQCDarethecouplinggs (orαs= gs2) 4π andthequarkmassesmq. 9.1.1. Runningcoupling: In the framework of perturbative QCD (pQCD), predictions for observablesare expressed in terms of the renor- malized coupling αs(µ2R), a function of an (unphysical) renormalization scaleµR. WhenonetakesµR closetothescaleofthemomentumtransfer Q in a given process, then αs(µ2R ≃ Q2) is indicative of the effective strengthofthestronginteractioninthatprocess. ***NOTETOPUBLISHEROFParticlePhysicsBooklet*** Pleaseusecropmarkstoalignpages September26,2016 15:58

Description:
Naming scheme for hadrons. 17. Heavy-quark & soft-collinear effective theory. 18. Lattice quantum chromodynamics. 20. Fragmentation functions in
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.