Wolf Plastic Surface Modification Rory A. Wolf Plastic Surface Modification Surface Treatment, Decoration, and Adhesion Hanser Publishers, Munich Hanser Publications, Cincinnati The Author: Rory A. Wolf, WI, USA [email protected] Distributed in the USA and in Canada by Hanser Publications 6915 Valley Avenue, Cincinnati, Ohio 45244-3029, USA Fax: (513) 527-8801 Phone: (513) 527-8896 or 1-800-950-8977 www.hanserpublications.com Distributed in all other countries by Carl Hanser Verlag Postfach 86 04 20, 81631 München, Germany Fax: +49 (89) 98 48 09 www.hanser.de The use of general descriptive names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Library of Congress Cataloging-in-Publication Data Wolf, Rory A. Plastic surface modification : surface treatment, decoration, and adhesion / Rory A. Wolf. p. cm. Includes bibliographical references and index. ISBN-13: 978-1-56990-447-3 (hardcover) ISBN-10: 1-56990-447-2 (hardcover) ISBN-13: 978-3-446-41270-5 1. Plastic coatings. 2. Plastics--Surfaces. 3. Surface preparation. 4. Surface active agents. 5. Adhesion. I. Title. TA418.76.W65 2010 668.4‘1--dc22 2009046726 Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.d-nb.de> abrufbar. ISBN 978-3-446-41270-5 All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or by any information storage and retrieval system, without permission in writing from the publisher. © Carl Hanser Verlag, Munich 2010 Production Management: Steffen Jörg Coverconcept: Marc Müller-Bremer, www.rebranding.de, München Coverdesign: Stephan Rönigk Typeset: Hilmar Schlegel, Berlin Printed and bound by by Kösel, Krugzell Printed in Germany Preface Polymersurfacemodificationisatopicthathasbeentheobjectofalargenumberofinves- tigationsbyacademiaandindustry,butrelativelylittleattentionhasbeenpaidtosurface activationtechnologieswhich,whenappropriatelyutilized,makespecificpolymer-based surfaces receptive to value-adding interfaces such as inks,coating and adhesive formu- lations.Adhesion strength is generally determined by the properties of a base material anditsinterface.Optimizingadhesionstrengthcanbeaccomplishedbymodifyingthese interfaceschemicallyandphysically.Aspolymersarecontinuallyengineeredtomeetnew productapplicationrequirements,optimizingtheactivationofthesesurfacesrequiresa fresh look at cost effective ways to etch,clean and functionalize them.These demands require detailed information on the surface treatment of classic materials, as well as an examination of the latest surface treatment machine designs available anywhere in theworldtodaywhichareusedtoprocessthesematerials.Therearefourfullchapters devotedspecificallytocorona,ozone,flame,andplasmadischargesurfacetreatmenttech- nologies;andaninterestingandusefulidentificationof commonadhesionmaladies. Theaimofthisbookistodescribetheprimarypolymeradhesionissuesfacedbymanu- facturers, processors and converters, to outline a variety of methods for attaining an appropriately activated surface, and to provide the diagnostics for various adhesion promotionissueswhichthereaderseekstotrouble-shoot. Contents Preface .................................................................... V Contents................................................................... VII 1 Introduction ........................................................... 1 2 PrimaryPolymerAdhesionIssueswithInks,Coatings,andAdhesives.... 3 2.1 CastandBlownFilms ............................................. 3 2.2 MetallizedFilms .................................................. 5 2.3 Foams ............................................................ 6 2.4 Textiles,FilamentsandYarns,andNonwovens ....................... 7 2.5 Injection-MoldedParts ............................................ 9 2.6 ThermoformedParts .............................................. 10 2.7 BlowMoldedParts ................................................ 11 3 Basic Principles of Atmospheric Discharge Surface Modification Technologies............................................................ 13 3.1 Corona(Air)PlasmaDischarge .................................... 13 3.2 Ozonation ........................................................ 16 3.3 FlamePlasmaDischarge .......................................... 17 3.4 ChemicalPlasmaDischarge ........................................ 18 4 AirPlasma(Corona)TreatmentTechnologies:FeaturesandApplication Benefits................................................................. 23 4.1 BareRoll:FeaturesandApplicationBenefits ......................... 23 4.2 CoveredRoll:FeaturesandApplicationBenefits ...................... 25 4.2.1 Silicone-CoveredRolls ..................................... 26 4.2.2 Hypalon®-CoveredRolls ................................... 26 4.2.3 EpoxyCoveredRolls ....................................... 26 4.2.4 CeramicCoveredRolls ..................................... 27 4.2.5 Glass-CoveredRolls ........................................ 27 4.2.6 RetrofittingRollCoverings ................................. 27 VIII Contents 4.3 UniversalRoll:FeaturesandApplicationBenefits ..................... 29 4.4 BlownArcSystems:FeaturesandApplicationBenefits ................ 30 4.5 BlownIonSystems:FeaturesandApplicationBenefits ................ 31 5 OzoneTreatmentTechnology:FeaturesandApplicationBenefits ......... 33 6 FlamePlasmaTreatmentTechnologies:FeaturesandApplicationBenefits 43 6.1 BurnerDesign .................................................... 44 6.2 FlameVelocity .................................................... 45 6.3 Optimizationof Treatment ......................................... 50 7 Chemical Plasma Treatment Technologies: Features and Application Benefits................................................................. 53 7.1 LowPressureVacuumChemicalPlasmas ............................ 53 7.2 VacuumPlasmaDepositionProcessesandApplications ............... 54 7.3 OptimizingVacuumPlasmaProcessingforAdhesion ................. 58 7.4 AtmosphericChemicalPlasmas .................................... 60 7.5 InfluenceonSurfaceCleaningUsingCO2 ........................... 68 8 Applying Surface Modification Methods to Decorating Processes to PromoteAdhesion ...................................................... 81 8.1 PrintingProcesses ................................................. 82 8.1.1 DirectTransferPlateTechnologies ........................... 82 8.1.2 IndirectTransferPlateTechnology .......................... 110 8.2 Labeling .......................................................... 121 8.2.1 PaperLabels .............................................. 123 8.2.2 FilmLabels ................................................ 124 8.2.3 In-MoldLabels ............................................ 125 8.2.4 RFIDLabels ............................................... 126 8.3 Painting .......................................................... 128 8.4 Dyeing ........................................................... 131 9 Applying Surface Modification Methods to Promote Adhesion with CoatingProcesses....................................................... 137 9.1 CoatingProcessesandAdhesiontoPorousandNon-PorousSubstrates 137 9.1.1 Adhesionof GapCoatings .................................. 138 9.1.2 Adhesionof ImmersionCoatings ........................... 140 Contents IX 9.1.3 Adhesionof CurtainCoatings .............................. 141 9.1.4 Adhesionof RotaryScreenCoatings ......................... 142 9.1.5 Adhesionof ReverseRollCoatings .......................... 143 9.1.6 Adhesionof GravureCoatings .............................. 144 9.1.7 Adhesionof Metering(Meyer)RodCoatings ................. 145 9.1.8 Adhesionof SlotDie(Extrusion)Coatings ................... 147 9.1.9 Adhesionof HotMeltCoatings ............................. 148 9.1.10 Adhesionof FlexographicCoatings .......................... 150 9.1.11 Adhesionof SilkScreenCoatings ........................... 151 9.1.12 Adhesionof Nanocoatings .................................. 153 10 ApplyingSurfaceModificationMethodstoPromoteAdhesiontoPlastic NanocompositeandCompositeMaterials ................................ 157 10.1 Adhesion of Inks to Polymer Nanocomposite-Based Electronic Packaging ........................................................ 162 10.2 Plasma Adhesion Promotion Techniques for Nanocomposite PhotovoltaicSolarCells ............................................ 164 References ................................................................. 170 SubjectIndex .............................................................. 172 1 Introduction Asacompletereferencesourceforsurfacemodificationof polymers,thisbookreviews traditionalandconventionalmethodsforimprovingtheadhesionofinks,coatingadhe- sives,metals,andotheradherendstopolymersandintroducesnewmethodsformolecu- larengineeringpolymersurfacestoenhancetheiradhesiontoawiderangeofmaterials. Inaddition,thisworkservestoturnthevastamountofdisparateinformationregarding plasticssurfacemodificationfromwiderangingsourcesintopracticalapplicationknowl- edge.Inordertomakethisinformationmostusefulforpractitioners,consultativedata isarrangedinconsistentformats. Modification of surface properties is based on the principle of the formation of phys- ical,chemical and multi-layer surface structures of various complexities,including the deposition of amorphous films, which are finely dispersed by both atmospheric and vacuumprocesses.Plasticsurfacemodificationswiththesetypesofdischargetechnolo- giesarewellknownmethodswhichcandramaticallyimprovefunctionalperformance. Targetedvariationsof surfacecharacteristicsof non-conductivematerialsincludewett- ability,adhesion,waterandchemicalresistance,oxygen,andwatervaportransmission,or acontrolledresponsetochangesinenvironmentalfactorssuchaspH,allwhileretaining thebulkpropertiesoftheoriginalpolymersubstrate.Desiredvariationsofsurfacechar- acteristicsofconductivematerialsincludecorrosionresistance,strength,wearresistance, fatiguestrength,electric-erosionresistance,andmanyothers. Inrecentyears,inorganicsubstrateshavebeenutilizedaschemicallyandthermallystable substrate materials for graft polymerization modification processes.Covalent bonding of polymericsurfacesontoinorganicsubstrateshasbeenusedtochangesurfacechem- istry,surfacestructure,andnativetopology.Atomicforcemicroscopy(AFM)hasbecome a popular method of investigating the surface microstructure of polymers.AFM char- acterizations paired with analysis from scanning electron microscopy (SEM) are now routinely used to elucidate changes in surface topography and structure which result fromatmosphericandvacuumdischargetreatmenttopolymersurfaces,includinggraft polymerization modification of inorganic materials.In addition,electron spectroscopy forchemicalanalyses(ESCA)isroutinelyusedtogeneratespectrawhichcanalsoprovide informationaboutasurface’schemicalenvironmentoroxidationstate. Itisthroughtheapplicationofthesesurfacemodificationmethodsandsurfaceanalytical techniquesthatdecoratingandlayering(laminating)processescanultimatelyoptimize adhesion promotion at the most cost-effective scale of end-use processing.Achieving adequate adhesion to polymers is a recurring and difficult problem throughout many industries,andmostnotablywithintheprintingandpackagingindustries.Historically, varioussurfacetreatmentshavebeenusedtoimprovetheadhesionof coatingstoplas- tics,includingcorona,flameandotherformsofsurfacepreparation.Highenergydensity treatmentssuchascoldgasplasmamethodsaregaininggreateracceptanceforsubstrate surfacemodificationbecausetheydeliverreactivespecies(photons,electrons,freeradi- 2 1 Introduction cals,and ions) that interact with the polymer surface and change its chemistry and/or morphology at atmospheric pressure.Because these processes can be readily incorpo- rated into printing and packaging manufacturing operations,this work will be useful in defining the necessary modifications to these material surfaces so that individual or multilaminatecompositestructurescanmeetorexceedenduserequirements. 2 Primary Polymer Adhesion Issues with Inks, Coatings, and Adhesives When addressing the adhesion of polymers to interfacing materials, the primary and foremost challenge is to understand the fundamental driving forces which can initiate thedevelopmentofadhesionstrengthbetweenpolymer-to-polymer,polymer-to-metal, polymer-to-ceramic,or polymer-to-inks coatings and adhesives.These interfaces also existinmultivariateenvironments,suchasheatandhumidity,whichalsomustbeexam- ined.Ultimately,itisthepolymerandtheinterfacechemistrythatdetermineadhesion. However,therecanbeadhesionfailurebetweenthepolymerandaninorganic,suchas ametal,duetoanoxidelayerthatisweaklyattached. That being said,this work will focus fundamentally on the bonding issues associated with polymers because of their unique deformation character,low modulus,and long chainstructure. Many polymeric materials inherently have a low surface energy that results in poor surfaceadhesionorevencompleteadhesionfailure.Thismakesitdifficultforinks,paints, adhesives and other coatings to properly wet-out and adhere to the surface of these substrates. Proper surface preparation of these materials will increase surface energy, improve surface adhesion properties, and add value to the product and the process. However,onemustkeepinmindthatitisthebulkmechanicalpropertiesofthepolymer that control the interfacial forces,which in turn influence adhesion.We will be subse- quentlyreviewingvarioussubstrateorientations,fromorientedandmetallizedfilmsto spunbonded polyolefins and molded polymers, in order to examine their bulk struc- turesfortheirabilitytoenduremechanically-induceddeformationstoallowforsurface rougheningandchemicalcovalentbondstoachieverequisiteadhesions. Itiswellknownthatpolymerchainentanglementistheprimarysourceof apolymer’s strength.It is also known that over time polymeric materials can become increasingly semi-crystalline,making their surfaces even more difficult to accept surface modifica- tiontechniques.Theprocessofaxiallyorbiaxiallyorientingpolymerfilms,forexample, strengthens these materials as their chains become stretched. It is therefore common practice for surface modification techniques, such as corona discharge, to take place immediatelyfollowingtheorientationphase. 2.1 Cast and Blown Films The cast film process involves the extrusion of various polymers which are melted through a slot or flat die to form a thin, molten sheet or film. This melted film, or “ extrudate”is typically laid to the surface of a water-cooled and chrome-plated roll by a blast of air from an air knife or vacuum box.Cast film extrusion orients molecules
Description: