Plasmonics and Super-Resolution Imaging Plasmonics and Super-Resolution Imaging edited by Zhaowei Liu 1rrr PAN STANFORD PUBLISHING Publishedby PanStanfordPublishingPte.Ltd. PenthouseLevel,SuntecTower3 8TemasekBoulevard Singapore038988 Email:[email protected] Web:www.panstanford.com BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. PlasmonicsandSuper-ResolutionImaging Copyright(cid:2)c 2017PanStanfordPublishingPte.Ltd. Allrightsreserved.Thisbook,orpartsthereof,maynotbereproducedinany form or by any means, electronic or mechanical, including photocopying, recordingoranyinformationstorageandretrievalsystemnowknownorto beinvented,withoutwrittenpermissionfromthepublisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not requiredfromthepublisher. ISBN978-981-4669-91-7(Hardcover) ISBN978-1-315-20653-0(eBook) PrintedintheUSA Contents Preface xiii 1 TheFar-FieldSuperlens 1 J.L.PonsettoandZhaoweiLiu 1.1 Introduction 1 1.1.1 Background 2 1.1.2 NegativeRefractionandthePerfectLens 3 1.1.3 TheNear-FieldSuperlens 7 1.2 One-DimensionalFar-FieldSuperlensTheory 8 1.3 One-DimensionalExperimentalDemonstration 13 1.3.1 VerifyingtheTransferFunction 14 1.3.2 BuildingaFar-FieldSuperlens 15 1.3.3 ExperimentalImaging 17 1.4 TuningtheOperationalWavelength 20 1.5 TheTwo-DimensionalFar-FieldSuperlens 23 1.6 Summary 27 2 BeatingtheDiffractionLimitwithPositiveRefraction: TheResonantMetalensApproach 33 GeoffroyLerosey,FabriceLemoult,andMathiasFink 2.1 Introduction 34 2.2 PrinciplesoftheResonantMetalens 36 2.2.1 LocallyResonantMetamaterials 37 2.2.2 CodingtheSubwavelengthInformationofa SourceintotheComplexSpectrumofa PolychromaticWaveField 41 2.2.3 EfficientConversionofEvanescentWavesto PropagatingOnes,ThankstoResonant Amplification 45 vi Contents 2.2.4 ApplicationsandLimitsofaResonantMetalens 50 2.3 ExperimentalDemonstrationswithMicrowavesand Sound 54 2.3.1 OriginalDemonstration:AWire Medium–BasedResonantMetalensfor MicrowaveApplications 54 2.3.2 MovingfromMicrowavestoAcoustics:ASoda Can–BasedResonantMetalens 62 2.4 OpticalResonantMetalenswithPlasmonic Nanoparticles 70 2.4.1 SpecificityofLightManipulation 70 2.4.2 DesigningthePlasmonicResonantMetalens 72 2.4.3 Far-FieldSubwavelengthFocusingofLight UsingTimeReversal 77 2.4.4 PolychromaticInterferometricFar-Field SubwavelengthImaging 79 2.5 Conclusion 82 3 UltrathinMetalensandThree-DimensionalOptical HolographyUsingMetasurfaces 91 XianzhongChen,LeiZhang,Cheng-WeiQiu,and ShuangZhang 3.1 Introduction 91 3.2 UltrathinMetalens 93 3.2.1 Background 93 3.2.2 DesignTheoryandSimulation 95 3.2.2.1 Requiredphaseprofile 95 3.2.2.2 Simulationmethod 96 3.2.2.3 Dual-polaritymetalens 97 3.3 3DOpticalHolographyUsingMetasurfaces 109 3.3.1 Background 109 3.3.2 DesignandSimulation 110 3.3.2.1 Computer-generatedhologram design 110 3.3.2.2 Designofametasurfacehologram 110 3.3.3 CharacterizationofaMetasurface Hologram 112 3.3.4 Discussion 119 3.4 Conclusion 121 Contents vii 4 PlasmonicStructuredIlluminationMicroscopy 127 FeifeiWei,JosephLouisPonsetto,andZhaoweiLiu 4.1 Introduction 128 4.1.1 OpticalMicroscopyandResolutionLimit 128 4.1.2 TraditionalMethodsofImprovingthe ResolvingPower 129 4.2 Super-ResolutionFluorescenceMicroscopyand SurfacePlasmons 130 4.2.1 Super-ResolutionFluorescenceMicroscopy Techniques 130 4.2.2 StructuredIlluminationMicroscopy 131 4.2.3 BackgroundofSurfacePlasmons 133 4.3 PrinciplesofPlasmonicStructuredIllumination Microscopy 135 4.3.1 SurfacePlasmonInterferenceFormation andManipulation 136 4.3.2 PSIMImageReconstructionMethod 141 4.4 PSIMDemonstration 144 4.4.1 NumericalDemonstrationofPSIM 144 4.4.2 ExperimentalDemonstrationofPSIM 147 4.4.3 Discussion 150 4.5 LocalizedPlasmonicStructuredIllumination Microscopy 152 4.6 PerspectiveandOutlook 158 5 OpticalSuper-ResolutionImagingUsingSurfacePlasmon Polaritons 165 IgorSmolyaninov 5.1 Introduction 166 5.2 SurfacePlasmonMicroscopy 168 5.3 TheSurfacePlasmonHyperlens 173 5.4 SurfacePlasmonMicroscopeOperationinthe GeometricOpticsMode 177 5.5 ConventionalPlasmonFocusingDevices 183 5.6 Conclusion 186 6 HyperlensesandMetalenses 191 DylanLuandZhaoweiLiu 6.1 Introduction 192 6.2 PhysicsoftheHyperlens 193 viii Contents 6.3 ExperimentalDemonstrationoftheHyperlens 196 6.4 WorkingMechanismoftheMetalens 201 6.5 MetalensDemonstration 204 6.5.1 DesignoftheMetalens:PlaneWaveFocusing forOpticalFourierTransform 204 6.5.2 ExtraordinaryImagingPropertiesofthe HyperbolicMetalens 209 6.6 HyperlensesforAcousticWaves 213 6.7 PerspectivesandOutlook 215 7 ModelingLinearandNonlinearHyperlensStructures 221 DanielAronovichandGuyBartal 7.1 Motivation 221 7.2 Background 223 7.2.1 TheHyperlens 223 7.2.2 NonlinearOptics 224 7.3 NumericalTechniquesandAlgorithms 225 7.3.1 TheBeamPropagationMethod 225 7.3.2 TheCylindricalBeamPropagationMethod 226 7.3.3 TheNonlinearBeamPropagationMethod 228 7.3.4 TheFiniteDifferenceMethod 230 7.3.5 TheCylindricalTransferMatrixMethod 231 7.4 TheNonlinearHyperlens 233 7.4.1 ThePerfectImagingCondition 233 7.4.2 DiffractionLossTrade-Off 234 7.4.3 NonlinearHyperlensSimulations 235 7.4.4 Conclusions 237 7.5 TheValidityoftheEMTinCylindricalCoordinates 238 7.5.1 TheCylindricalAmplitudeTransfer Function 239 7.5.2 TheMeanSquareApproximationError 241 7.6 Conclusions 242 8 Nanoparticle-AssistedStimulatedEmissionDepletion(STED) Super-ResolutionNanoscopy 247 YonatanSivanandYannickSonnefraud 8.1 Prologue:AEulogytoaFriend 247 8.2 Introduction 248 Contents ix 8.3 PrinciplesofSTEDNanoscopy 252 8.3.1 QualitativeDescription 252 8.3.2 QuantitativeDescription 258 8.4 LightInteractionwithMetalNanoparticles 260 8.5 PrinciplesofNP-STEDNanoscopy 264 8.5.1 QualitativeDiscussion 264 8.5.2 QuantitativeDiscussion 266 8.5.3 DesignConsiderationsforNP-STED FluorescentLabels 270 8.5.4 IdealNP-STEDIllumination 272 8.5.5 Example:MetalNanoshells 274 8.6 ExperimentalResults 277 8.7 Methods 279 8.7.1 NumericalCalculations 279 8.7.2 ExperimentalSTEDNanoscopySystem 284 8.8 SummaryandOutlook 285 9 Lab-on-Antennas:PlasmonicAntennasforSingle-Molecule Spectroscopy 299 YongminLiuandHuCang 9.1 Introduction 300 9.1.1 Nanofocusing 302 9.2 ReducingtheFocusVolume 304 9.2.1 ProbingtheFocusVolumewith Single-MoleculeSuper-Resolution Imaging 305 9.2.2 PlasmonicAntennasforHigh-Concentration SMS 307 9.3 SuppressingPhotobleaching 309 9.3.1 PhotobleachingLimitstheResolution ofSMS 310 9.3.2 ThePlasmonicPurcellEffect 311 9.3.3 TheKineticModelofPhotobleaching Suppression 313 9.3.4 NumericalSimulationofPlasmonicAntennas forPhotobleachingSuppression 317 9.3.5 ExperimentalObservation 321 9.4 SummaryandProspects 325