ebook img

Planet formation in post-common-envelope binaries PDF

0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Planet formation in post-common-envelope binaries

Astron.Nachr./AN999,No.88,789–795(2006)/DOIpleasesetDOI! Planet formation in post-common-envelope binaries Dominik R.G. Schleicher1,⋆, Stefan Dreizler1, Marcel Vo¨lschow2, Robi Banerjee2, and Frederic V. Hessman1 1 Institutefu¨rAstrophysikGo¨ttingen,Friedrich-Hund-Platz1,37077Go¨ttingen,Germany 2 HamburgObservatory,Gojenbergsweg112,21029Hamburg,Germany 5 Received30May2005,accepted11Nov2005 1 Publishedonlinelater 0 2 n Keywords post-commonenvelopebinaries,commonenvelope,planetformation a Tounderstandtheevolutionofplanetarysystems,itisimportanttoinvestigateplanetsinhighlyevolvedstellarsystems, J andtoexploretheimplicationsoftheirobserved propertieswithrespecttopotentialformationscenarios. Observations 7 suggestthepresenceofgiantplanetsinpost-common-envelopebinaries(PCEBs).Aparticularlywell-studiedsystemwith planetarymassesof1.7MJ and7.0MJ isNNSer.Weshowherethatapurefirst-generationscenariowheretheplanets ] formbeforethecommon envelope(CE)phaseandtheorbitsevolveduetothechanges inthegravitationalpotentialis R inconsistentwiththecurrentdata.Weproposeasecond-generationscenariowheretheplanetsareformedfromthematerial S thatisejectedduringtheCE,whichmaynaturallyexplaintheobservedplanetarymasses.Inaddition,hybridscenarios . wheretheplanetsformbeforetheCEandevolveduetotheaccretionoftheejectedgasappearasarealisticpossibility. h p (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim - o r st 1 Introduction formation of planets in gaseous disks formed by stellar a windsinbinarysystems. [ 1 While observational studies have predominantly focused Animportantclassofhighlyevolvedbinarieswherethe on planetary systems around single stars, it is well-known v presenceofplanetsisconsideredarethepost-commonen- that mostof the stars are in binaries.It is thereforeimpor- 6 velope binaries (PCEBs). These are compact binary sys- 5 tantto understandwhetherplanetscanformin binarysys- tems of only a few solar radii consisting of a white 6 tems, which is suggested by an increasing amount of re- dwarf and a low-mass main sequence star. For the PCEB 1 centobservations.TheunevolveddG/dMbinaryKepler47 0 system NN Ser, different series of mid-eclipse times harbors two planets with orbital periods of 49.5 days and . have been obtained since the discovery of the eclipses 1 303.2 days (Oroszetal., 2012). The binary system Kepler in 1998 (Beuermannetal., 2013, 2010; Brinkworthetal., 0 16 hosts the Saturn-sized planet Kepler 16b (Doyleetal., 5 2006; Haefneretal., 2004). In 2010, the quality of the 2011)andKepler34/35hostsaplanetwith1/5ofJupiter’s 1 data was good enough to obtain a two-planet solution : mass(Welshetal.,2012).Fromatheoreticalpointofview, (Beuermannetal., 2010), which was shown to be dynam- v theformationofplanetsinbinarysystemshasbeenexplored i icallystable(Beuermannetal.,2013).Themostrecentdata X e.g.byHaghighipour&Raymond(2007). suggest planetary masses of 1.7 M and 7.0 M with J J r To understand the evolution of planetary systems, it low eccentricities and semi-major axis of ∼ 3.3 AU and a is particularly relevant to search for planets in highly ∼5.4AU(Beuermannetal.,2013).Theplanetarysolution evolved stellar systems, to determine if and under which hasbeenconfirmedbyMarshetal.(2014). conditions they survive different phases of stellar evolu- tion. The first exoplanets have been found around pul- At the same time, there is increasing evidence against sars, which provideaccurateclocksfora precisemeasure- alternativeexplanationsof the eclipsingtime variations.A ment(e.g.Konacki&Wolszczan,2003;Wolszczan&Frail, frequently considered mechanism are periodic changes in 1992; Yanetal., 2013). Recent observations have re- thestellarstructurerelatedtomagneticactivity,whichcould vealedthe presenceofa protoplanetarydebrisdisk around give rise to regular changes in the star’s quadrupole mo- the pulsar 4U 0142+61 (Ertanetal., 2007; Wangetal., ment and therefore affect the gravitational coupling in the 2006). Planet formation scenarios in highly evolved stel- binarysystem (Applegate, 1992). ForNN Ser,thismecha- lar systems have been put forward by Perets (2010) and nismhasbeenexcludedonenergeticgrounds,duetothelow Tutukov&Fedorova (2012), considering for instance the mass of the secondarystar and the limited energyproduc- tion(Brinkworthetal.,2006).Indeed,onemayexpectthat similarargumentscanbemadeformanysystemswithlow- ⋆ Corresponding author: e-mail: [email protected] masscompanions(Zorotovic&Schreiber,2013).Thepos- goettingen.de sibility ofapsidalprecessionhasalso beenexcludedbased (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 790 D.R.G.Schleicher:Planetformationinpost-common-envelopebinaries onrecentdata(Parsonsetal.,2014),leavingonlytheplan- of 3, we therefore expect planetary orbits on scales of ∼ etaryhypothesisasapossibleexplanation. 10AU,considerablylargerthantheobservedones. In this article, we will first review the main argu- In these calculations, we have implicitly assumed that ments againsta first-generationorigin of the planetsgiven the mass loss occurs almost instantaneously. This is plau- by Vo¨lschowetal. (2014) in section 2, and subsequently sible, as most of the energy is released in the late stages put forward a potential formation scenario for second- of the common envelope phase, where the secondary has generation planets in section 3 (see Schleicher&Dreizler, spiraled down to scales close to the central core, and the 2014).Ourmainresultsandconclusionsaresummarizedin energy release occurs on very short timescales (see e.g. section4. Kashi&Soker, 2011). However, the models for the com- mon envelope phase are still highly uncertain, and it is also conceivable that, at least for part of the evolution, 2 The caseagainstafirst-generation origin the mass loss occurs more gradually. Such a scenario has beenexploredbyPortegiesZwart(2013)fortheplanetsin To assess the feasibility of a first-generation scenario, we HUAqua.Inthiscase,theorbitsoftheplanetswillgradu- need to reconstructthe propertiesof the system beforethe allyadjustaccordingtothedecreasingmassofthesystem. common envelopephase. We will here discuss the case of From the conservationof angular momentum, one can initiallysphericalorbits,andrefertoVo¨lschowetal.(2014) then show that r = r µ−1, with r and r the final and f i f i for the more general case. Following Beuermannetal. initialradiusofthesphericalorbit.Withtheexpectedmass (2010), we expect an initial size of the binary of about loss factor µ ∼ 0.3, we therefore find an orbital increase 1.44 AU, corresponding to the typical size of a red gi- by a factor of ∼ 3, suggesting that the observedplanetary ant. The latter allows the system to enter the common en- orbits should be ∼ 10 AU, while in fact the planets have velope phase during the later stages of the evolution. Us- beendetectedwithsemi-majoraxesof3.3AUand5.4AU. ing the binary star evolution code by Hurleyetal. (2002), Additional arguments can be made based on the ec- Mustilletal. (2013) have reconstructed the mass of the centricities of the planets. In the orbital solution of white dwarf progenitor to be between 1.875 M⊙ and Beuermannetal.(2013),thesearegivenasǫ =0.144and 1 2.25 M⊙, assuming metallicities between 0.01 and 0.03. ǫ = 0.222 for the outer and inner planet. In the case of 2 As the current mass of the white dwarf corresponds to an instantaneousmassloss, onewouldexpecta significant MWD = 0.535 M⊙, we have a mass loss factor µ = increaseoftheeccentricityas(Vo¨lschowetal.,2014) M /M ∼ 0.3. The mass of the secondary corre- current prev ǫ =µ−1−1. (4) spondstoM2 = 0.111M⊙,andplaysonlyaminorrolein f themassbudget.Insuchasystem,itiswell-knownthatthe For mass loss factors of µ ∼ 0.5, we thereforeexpect ec- planetary orbits are dynamically unstable, unless they ex- centricitiesoforder1.Similarresultshavebeenreportedby ceedatleastthreeHillradii.Asaresult,oneexpectssemi- Mustilletal.(2013)basedonadynamicalanalysis. major axis of r ∼ 2.5 AU. Assuming Keplerian rotation, To avoid these constraints, gas drag forces are neces- p wehave sary to decrease the planetaryvelocitiesby frictioneffects GM to keep them gravitationally bound and at low eccentric- v2 = ini, (1) p r ities. For this purpose, Vo¨lschowetal. (2014) considered p bothasphericallysymmetricoutflowassuminganexponen- where M is the initial mass of the system. Due to the ini tialdensityprofile,aswellasadisk-shapedejectionmecha- mass loss of the system, the gravitational binding energy nismintheorbitalplaneofthebinarysystem.Inthespher- willdecrease,sotheorbitsoftheplanetswillwidenoreven icallysymmetriccase,theircalculationshowsthatthedrag become unbound. Considering that the escape velocity is forcesisclearlysubdominant,withatypicalratioof10−10 givenas comparedtothegravitationalforce.Foradisk-shapedout- 2GM flow,therecanbesomeinitialdraginwards,whichiscom- v2 = , (2) esc r pensated during the subsequent evolution, where the drag p forces are reduced during the expansion of the disk, and with M = µM the central mass after the ejection, the ini evenanoutwardaccelerationmayoccurwhenthediskma- planetswillbecomeunboundforamasslossfactorµ<0.5. terialmovesbeyondthe planetaryorbit.Infact, inmostof As mentioned above, a mass loss of µ ∼ 0.3 is expected the simulations the planets are ejected, and it appears un- for NN Ser, and it seems likely that the previous planets likelythattheobservedlow-eccentricityorbitscouldbepro- became gravitationally unbound. Even for more moderate duced. A potential way to avoid the problem could be an mass losses, one can show that the planetary orbits would angular momentum exchange with an inhomogeneousgas evolveas(Vo¨lschowetal.,2014) distribution, which could however easily produce an infall r a = i , (3) oftheplanetsontothestar.Alternatively,onecouldincrease f 2−µ−1 theeffectofthegasdragandtheresultingfrictionbymain- with a the semi-major axis after the mass loss and r the taininghighgasdensitiesneartheplanetsforseveralorbital f i initial orbital radius. Assuming a typical expansion factor periods.Thelattercanbethecaseifsomematerialisejected (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(2006) 791 butremainsgravitationallybound,leadingtotheformation at a radius of 0.9 R⊙. In general, one may therefore ex- ofa fall-backdisk.Insuchacase,thegaswillbeaccreted pect the mass in the envelopeto be ejected, but one needs ontotheplanetsandaffecttheirdynamicalevolution.Inthe todeterminewhichfractionofthemassbecomestruelyun- nextsection,wewillconsidertheformationofsuchafall- bound. The latter requires to also determine the velocities backdiskandtheformationofnewplanetsviagravitational of the ejected material. Clearly, the latter can be pursued instabilities.Theseplanetsmayeitherformfromseedscre- onlyinanapproximatefashionwithinananalyticalframe- atedbythegravitationalinstability,orpotentiallyalsofrom work(seee.g.Kashi&Soker,2011),whilenumericalsim- the previous planets, which may become the cores of the ulations may not be able to address the later stages of the newones.Inthefirstcase,weexpectatruelysecondgenera- evolution(cf.Passyetal.,2012). tion,whilethesecondcasecorrespondstoahybridscenario betweenfirst-andsecond-generationplanetformation. 3 Planetformationfrom the ejecta of common envelopes Inthissection,wedescribetheformationofafall-backdisk afterthecommon-envelopephase,aswellastheformation ofgiantplanetsviagravitationalinstabilitiesasoutlinedby Schleicher&Dreizler(2014). 3.1 Ejectionandtheformationofafall-backdisk Fortheejectionevent,weadoptthemodelofKashi&Soker (2011) as employed by Schleicher&Dreizler (2014). We assume the AGB star to consist of a core with M = core Fig.1 Comparisonofthegravitationalbindingenergyof 0.535 M⊙ and an envelopewith Menv = 1.465M⊙, con- the envelopewith the gravitationalenergyreleased via the sistentwiththeparametersinferredbyMustilletal.(2013). inspiralin NN Ser. Both energiesbecomeequalforE = Themassenclosedwithinradiusristhengivenas B r EG ∼ 1.2×1047 ergataradiusof∼ 0.94R⊙,leadingto M(r)=M + 4πr2ρ(r)dr, (5) theejectionoftheenvelope(Schleicher&Dreizler,2014). core Z Rcore with Rcore ∼ 0.01 R⊙. As in the models of Nordhaus&Blackman (2006), Tauris&Dewi (2001) and In the following, we will assume that the energy in- Soker(1992),weassumeapower-lawdensityprofileinthe jection occurs almost instantaneously, which may be jus- envelopeoftheAGBstarwhere tified due to the short timescales once that the secondary has reached small scales close to the central core. This is ρ(r)=Ar−ω, (6) also the stage where most of the gravitational energy will withω = 2.Fromthemassoftheenvelope,thenormaliza- bereleased.Wecanthereforeemploytheself-similarSedov tionfollowsas solutionfora powerlaw densityprofile(Sedov, 1959). As M theinjectedenergyE ,weconsiderthesumofthebinding A= env (7) 0 4πR∗ energyoftheenvelopeEB andtheavailablethermalenergy intheenvelope,whichwecalculatefromthevirialtheorem with R∗ the radius of the AGB star, for which we adopt a typical value R∗ ∼ 185 R⊙. We consider now the inspi- as0.5EB.Thepositionoftheshockfrontisthenexpected toevolveas raaslsuomfethtehastecthoendejaercytisotnarowcciuthrsmoanscseMtha2t=the0r.e1l1e1asMed⊙graanvd- R (t)= E0t2 1/(5−ω), (10) S itationalenergyexceedsthebindingenergyoftheenvelope (cid:18) αA (cid:19) massoutsideradiusr.Thelatterisgivenas wheretheconstantαcanbecalculatedfromenergyconser- vation.Itisthenpossibletoobtainthepost-shockprofilesof R∗ G(M(r)+M ) E = 2 4πr2ρ(r)dr, (8) theradialvelocity,densityandpressureas(Kashi&Soker, B Z r r 2011;Schleicher&Dreizler,2014) whiletheformeriscalculatedvia 2 r 1r v = = , (11) GM(r)M G(M +M )M 3γ−1t 2t E = 2 − core env 2. (9) G 2r 2R∗ ρ = A(γ+1)λ8/(γ+1) =4Ar−2λ3, (12) Inthisequation,thefactor1/2reflectsthathalfofthegravi- rω(γ−1) tationalpotentialisbalancedbythekineticenergy.Wecom- A 2(γ+1) 1 p = λ8/(γ+1) = At−2λ3, (13) parebothexpressionsinFig.1andshowthattheyareequal rω−2t2(3γ−1)2 3 www.an-journal.org (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 792 D.R.G.Schleicher:Planetformationinpost-common-envelopebinaries where we assumed γ = 5/2 after the second equality and 3.2 Planetformationviagravitationalinstabilities introducedtheself-similarvariable Inthefollowing,weassumethatthegasofthegravitation- Aα 1/(5−ω) allyboundmaterialsettlesintoadiskdescribedbyapower- λ= rt−2/(5−ω) =r/R . (14) (cid:18)E (cid:19) S lawprofileofthegassurfacedensity, 0 r n FromtheconsiderationthatEtherm+Ekin = E0,onecan Σ(r)=Σ0 out , (19) r showthatα=π.Weevaluatethevelocityprofileatthetime (cid:16) (cid:17) whereRS = R∗, andcomparewith theescapevelocityof whererout denotestheouterradiusofthedisk,Σ0 thedisk thesystem, surfacedensityattheouterradius,andnthepower-lawin- dex.WewillinparticularconsiderthecaseofaMesteldisk 2G(M +M ) 1/2 withn = 1(Mestel, 1963).We noteherethatΣ andr v (r)= core 2 . (15) 0 out esc (cid:18) r (cid:19) can be calculatedfromthedisk mass andangularmomen- tumasoutlinedinSchleicher&Dreizler(2014),andthere- As a result,we find thatthe masson scales above106R⊙ sultingsurfacedensityprofilesaregiveninFig.2. becomesunbound.Theejectedmasswhichremainsbound to the system correspondsto Mbound ∼ 0.133M⊙ or 140 Jupiter masses. In reality, the bound fraction may even be higheriftheejectionprocessishighlyinhomogeneous. Arelevantquestionconcernstheangularmomentumof the ejected material. The total angular momentum that is depositedintheenvelopebythesecondarycanbeestimated as GM Ldep =M2R∗r R∗1, (16) yieldingabout1.2×1052ergcm2 s−1.Itishoweverlikely that the envelope was previously rotating, as angular mo- mentum can be exchanged with the secondary via tidal torques before the onset of the common envelope phase (Hurleyetal., 2002; Hut, 1981; Soker, 1995; Zahn, 2008). Fig.2 Thegassurfacedensityasafunctionofradiusfor As shown by Bear&Soker (2010), the rotational velocity the modelsoutlinedby Schleicher&Dreizler (2014), with canreachf = 45%ofthebreakupvelocity.Theangular rot power-law indices from n = 0 to n = 1.5.The models momentumduetorotationoftheenvelopeisthusgivenas are normalized to reproduce the observed planetary mass R∗ GM(r) 1/2 at5.4AU(Schleicher&Dreizler,2014). L = f ·4πr2drρ(r)r , (17) rot rot Z (cid:18) r (cid:19) 0 yieldingacontributionofL ∼2.6×1052ergcm2s−1.To We expect that the disk efficiently cools through the rot determinethespatialextentofthedisk,themainquantityof emission of the dust grains, and the Toomre Q parameter interest is howeverthe specific angularmomentum,which reachesasmarginallystablestatewith weparametrizeas c Ω Q= s ∼1. (20) L L πGΣ disk =α dep. (18) L Mdisk Mej Wethereforehave πGΣ Both due to the inhomogeneous injection of the angu- c = . (21) s lar momentum of the secondary, as well as due to the Ω initial rotation of the envelope, one may expect that a WenotethatΩiscalculatedassumingKeplerrotationwith value of αL ∼ 10 can be achieved (see discussion in acentralmasscorrespondingtothemassofthepresentsys- Schleicher&Dreizler,2014).Similarenhancementsofthe tem.Thediskheightfollowsash(r) =c (r)/Ω(r)(Levin, s specificangularmomentumhavebeenobservedforinstance 2007;Lodato,2007). inthegaseousdisksintheRedRectangle(Bujarrabaletal., The mass of the initial clumps forming by the grav- 2005, 2003). We also note that an independentanalysis of itational instability is then given as (Boleyetal., 2010; the angular momentum constraints has been pursued by Meru&Bate,2010,2011;Rogers&Wadsley,2012) Bear&Soker (2014), finding no relevant constraints for planetformationinNNSer. M =Σ(r)h2(r). (22) cl (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(2006) 793 Theseclumpsmaygrowontheorbitaltimescaleuntilthey reachthegapopeningmasswherethewholediskisevapo- ratedneartheirorbit(Lin&Papaloizou,1986): α 1/2 r 1/2 M =M 12π crit . (23) f cl 0.3 h h (cid:16) (cid:17)i (cid:16) (cid:17) Here α denotesthe α-parameterforviscousdissipation crit for which fragmentation occurs. We adopt here a generic valueofα ∼ 0.3(Gammie,2001).Theresultingclump crit masses are given in Fig. 3. We note in particular that it is straightforward to reproduce the characteristic mass scale of the planets, while the expected position has a stronger dependenceonthespecificangularmomentum.Inaddition, the potentialeffectof migration has to be considered(e.g. Baruteauetal.,2011).Asaresultofsuchmigration,theob- served resonances of the planets (Beuermannetal., 2013) Fig.4 Thegastemperatureinthepresenceofphotoheat- mayformontimescalesofafeworbitalperiods. ingfromthestarinthecaseofaMesteldisk,corresponding tomodelCdescribedbySchleicher&Dreizler(2014).We explore the effect of different effective temperature of the central star T∗. The minimum temperaturein the modelis basedontheassumptionthatthediskshouldbemarginally stable(Schleicher&Dreizler,2014). adopttheminimumofEq.24andthetemperatureexpected inamarginallystablestate(Q∼1). TheresultingthermalevolutionisgiveninFig.4,show- ing that radiative feedbackcan stabilize the disk on scales aroundafewAU. Thelattermaynaturallyexplainthesta- bility of the disk in the interior, and could in fact provide a natural point to stop the migration, as it becomes easier to create a gap in the disk once it is gravitationally stable (Baruteauetal.,2011). Fig.3 Thefinalclumpmassesasafunctionofradiusfor themodelsbySchleicher&Dreizler(2014)intheabsence 3.4 Comparisonwiththeobservedpopulation ofradiativefeedback,withpower-lawslopesfromn=0to n=1.5(Schleicher&Dreizler,2014). While NN Ser is currently the system with the most de- tailed data and the highest-quality fits to the planetary orbits, Zorotovic&Schreiber (2013) have suggested 12 PCEB-systems which may harbor such massive planets, some of which even indicate the presence of two plan- 3.3 Radiativefeedback ets as in NN Ser. These systems include five detached Radiationfromthecentralstarcansubstantiallyheatupthe systems with a hot subdwarf B (sdB), four detached sys- diskandstabilizeitagainstgravitationalinstabilitiesinthe temswith a white dwarf(WD) andthreecataclysmic vari- interior.WeadoptheretheapproachofChiang&Goldreich ables (CVs). For the system NSVS14256825, the two- (1997) to estimate the temperature in the midplane of the planet solution was shown to be dynamically unstable diskas (Wittenmyeretal., 2013), while the one-planet solution is stable (Beuermannetal., 2012). In this case, we therefore T = θ 1/4 r∗ 1/2T∗, (24) usethedataofBeuermannetal.(2012),whileweadoptthe (cid:18)4(cid:19) (cid:16) r (cid:17) parametersinferredbyZorotovic&Schreiber(2013)inthe whereT∗ istheeffectivetemperatureofthecentralstarand othercases. r∗ its radius. We consider here the stage very early after The comparison of the theoreticalpredictions with the theejection,andthereforeestimatetheradiusofthestarto observationallyinferredmasses is givenin Fig. 5. We find becomparabletotheremainingradiusofthecore(seee.g. thatthereisapopulationshowinggoodagreementwiththe Schleicher&Dreizler,2014).Thegrazingangleθdescribes theoreticalpredictions,as well as an additionalpopulation the angle at which light from the star strikes the disk, and withevenhighermasses.Thelattermayhinteitheratadif- is estimated as θ ∼ 0.4r∗/r. For the temperature,we then ferent origin of these planets, or the potential presence of www.an-journal.org (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 794 D.R.G.Schleicher:Planetformationinpost-common-envelopebinaries additionaleffectsrelatedtomagneticactivity,whichcannot Acknowledgements. We thank Klaus Beuermann, Christiane beruledoutinsomecases. Diehl, TimLichtenberg and Sonja Schuh for stimulating discus- sions on the topic. DRGS thanks for funding fromthe Volkswa- genfoundationviatheproject”Planetsbeyondthemainsequence: 4 Discussionandconclusions theoryandobservations”.SDthankstheDeutscheForschungsge- meinschaft (DFG)for funding viatheSFB963/1”Astrophysical In this article, we have summarized the main arguments flowinstabilitiesandturbulence”(projectA5). against a first-generation scenario for the planets in NN Ser,andpresentedatheoreticalmodelexplainingtheforma- tionofplanetsfromtheejectaduringthecommonenvelope References phase.Themodelnaturallyexplainstheobservedplanetary Applegate,J.H.1992,ApJ,385,621 masses in NN Ser, and is in good agreement with a num- Baruteau, C., Meru, F., & Paardekooper, S.-J. 2011, MNRAS , ber of additionalsystems. In addition, there seems to be a 416,1971 population where the observationally inferred masses sig- Bear,E.&Soker,N.2010,NewAstron.,15,483 nificantlyexceedthetheoreticalpredictions.Itisinteresting Bear,E.&Soker,N.2014,MNRAS,444,1698 to notethatinexactlythesecases, itisdifficulttojustifya Beuermann, K., Breitenstein, P., Debski, B., et al. 2012, A&A, second-generationscenarioduetoangularmomentumcon- 540,A8 straints(Bear&Soker,2014).Thelattercanpotentiallyhint Beuermann,K.,Dreizler,S.,&Hessman,F.V.2013,A&A,555, atadifferentplanetaryorigin.Wenotethatbeyondapurely A133 first-orsecond-generationorigin,alsohybridscenariosare Beuermann, K., Hessman, F. V., Dreizler, S., et al. 2010, A&A, conceivable where the existing planets accrete additional 521,L60 massfromtheboundmaterialremainingaftertheejection. Boley, A. C., Hayfield, T., Mayer, L., & Durisen, R. H. 2010, Icarus,207,509 Brinkworth,C.S.,Marsh,T.R.,Dhillon,V.S.,&Knigge,C.2006, MNRAS,365,287 Bujarrabal, V., Castro-Carrizo, A., Alcolea, J., & Neri, R. 2005, A&A,441,1031 Bujarrabal, V., Neri, R., Alcolea, J., & Kahane, C. 2003, A&A, 409,573 Chiang,E.I.&Goldreich,P.1997,ApJ,490,368 Doyle,L.R.,Carter,J.A.,Fabrycky,D.C.,&etal.2011,Science, 333,1602 Ertan,U¨.,Erkut,M.H.,Eks¸i,K.Y.,&Alpar,M.A.2007,ApJ, 657,441 Gammie,C.F.2001,ApJ,553,174 Haefner, R., Fiedler, A., Butler, K., & Barwig, H. 2004, A&A, 428,181 Haghighipour,N.&Raymond,S.N.2007,ApJ,666,436 Hurley,J.R.,Tout,C.A.,&Pols,O.R.2002,MNRAS,329,897 Hut,P.1981,A&A,99,126 Fig.5 Comparison of model predictons (diamonds) Kashi,A.&Soker,N.2011,MNRAS,417,1466 with planetary masses inferred from observations by Konacki,M.&Wolszczan,A.2003,ApJ,591,L147 Zorotovic&Schreiber(2013)(triangles).Thedataindicate Levin,Y.2007,MNRAS,374,515 Lin,D.N.C.&Papaloizou,J.1986,ApJ,309,846 the potentialpresence of two populations,one comparable Lodato,G.2007,NuovoCimentoRivistaSerie,30,293 toourmodelpredictions,andonewithevenhighermasses Marsh,T.R.,Parsons,S.G.,Bours,M.C.P.,etal.2014,MNRAS, (Schleicher&Dreizler,2014). 437,475 Meru,F.&Bate,M.R.2010,MNRAS,406,2279 Meru,F.&Bate,M.R.2011,MNRAS,410,559 The scenario proposed here can be validated through Mestel,L.1963,MNRAS,126,553 thefurtherobservationoftheeclipsingbinarysystems,asa Mustill,A.J.,Marshall,J.P.,Villaver,E.,etal.2013,MNRAS, strictperiodicityisexpectedinthecaseofplanetaryorbits. 436,2515 Inaddition,complementaryapproacheslikethedetectionof Nordhaus,J.&Blackman,E.G.2006,MNRAS,370,2004 theplanetsviatheirthermalemissioncouldprovideanim- Orosz,J.A.,Welsh,W.F.,Carter,J.A.,etal.2012,Science,337, 1511 portantpathwaytoconfirmtheirexistence.Telescopeslike Parsons,S.G.,Marsh,T.R.,Bours,M.C.P.,etal.2014,MNRAS, GeminiandALMAmayinadditionlookforremantsofthe 438,L91 gravitationallyboundgasin NN Ser to identifya potential Passy,J.-C.,DeMarco,O.,Fryer,C.L.,etal.2012,ApJ,744,52 debrisdiskorthegasejectedduringthecommonenvelope Perets,H.B.2010,ArXive-prints1001.0581 event.Thelattermayprovidefurtherinformationtosignifi- PortegiesZwart,S.2013,MNRAS,429,L45 cantlyrefinesuchamodel. Rogers,P.D.&Wadsley,J.2012,MNRAS,423,1896 (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(2006) 795 Schleicher,D.R.G.&Dreizler,S.2014,A&A,563,A61 Sedov, L. I. 1959, Similarity and Dimensional Methods in Me- chanics Soker,N.1992,ApJ,389,628 Soker,N.1995,MNRAS,274,147 Tauris,T.M.&Dewi,J.D.M.2001,A&A,369,170 Tutukov,A.V.&Fedorova,A.V.2012,AstronomyReports,56, 305 Vo¨lschow,M.,Banerjee,R.,&Hessman,F.V.2014,A&A,562, A19 Wang, Z., Chakrabarty, D., & Kaplan, D. L. 2006, Nature, 440, 772 Welsh,W.F.,Orosz,J.A.,Carter,J.A.,Fabrycky,D.C.,&etal. 2012,Nature,481,475 Wittenmyer,R.A.,Horner,J.,&Marshall,J.P.2013,MNRAS, 431,2150 Wolszczan,A.&Frail,D.A.1992,Nature,355,145 Yan,Z.,Shen,Z.-Q.,Yuan,J.-P.,etal.2013,MNRAS,433,162 Zahn,J.-P.2008,inEASPublicationsSeries,Vol.29,EASPubli- cationsSeries,ed.M.-J.Goupil&J.-P.Zahn,67–90 Zorotovic,M.&Schreiber,M.R.2013,A&A,549,A95 www.an-journal.org (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.