ebook img

Planar maps, random walks and circle packing PDF

126 Pages·2020·1.899 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Planar maps, random walks and circle packing

Lecture Notes in Mathematics 2243 École d'Été de Probabilités de Saint-Flour Asaf Nachmias Planar Maps, Random Walks and Circle Packing École d'Été de Probabilités de Saint-Flour XLVIII - 2018 Lecture Notes in Mathematics 2243 Editors-in-Chief: Jean-MichelMorel,Cachan BernardTeissier,Paris AdvisoryEditors: KarinBaur,Leeds MichelBrion,Grenoble CamilloDeLellis,Princeton AlessioFigalli,Zurich AnnetteHuber,Freiburg DavarKhoshnevisan,SaltLakeCity IoannisKontoyiannis,Cambridge AngelaKunoth,Cologne ArianeMézard,Paris MarkPodolskij,Aarhus SylviaSerfaty,NewYork GabrieleVezzosi,Firenze AnnaWienhard,Heidelberg Moreinformationaboutthissubseriesathttp://www.springer.com/series/7098 Saint-Flour Probability Summer School The Saint-Flour volumes are reflections of the courses given at the Saint-Flour Probability Summer School. Founded in 1971, this school is organised every year by the Laboratoire de Mathéma- tiques (CNRS and Université Clermont Auvergne, Clermont- Ferrand, France). It is intended for PhD students, teachers and researchers who are interested in probability theory, statistics, and in their applications. The duration of each school is 12 days (it was 17 days up to 2005), and up to 100 participants can attend it. The aim is to provide, in three high-level courses, a comprehensive study of some fields in probability theory or Statistics. The lecturers are chosen by an international scientific board. The participants themselves also have the opportunity to give short lectures about their research work. Participants are lodged and work in the same building, a former seminary built in the 18th century in the city of Saint-Flour, at an altitude of 900 m. The pleasant surroundings facilitate scientific discussion and exchange. The Saint-Flour Probability Summer School is supported by: Laboratoire de Mathématiques Blaise Pascal Université Clermont Auvergne Centre National de la Recherche Scientifique (C.N.R.S.) For more information, see http://recherche.math.univ-bpclermont.fr/stflour/stflour-en.php Christophe Bahadoran [email protected] Arnaud Guillin [email protected] Hacène Djellout Hacè[email protected] [email protected] Université Clermont Auvergne - Aubière cedex, France Asaf Nachmias Planar Maps, Random Walks and Circle Packing École d’Été de Probabilités de Saint-Flour XLVIII - 2018 AsafNachmias DepartmentofMathematicalSciences TelAvivUniversity TelAviv,Israel ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISSN0721-5363 Écoled’ÉtédeProbabilitésdeSaint-Flour ISBN978-3-030-27967-7 ISBN978-3-030-27968-4 (eBook) https://doi.org/10.1007/978-3-030-27968-4 MathematicsSubjectClassification(2010):Primary:82B41;Secondary:52C26 Thisbookisanopenaccesspublication. ©TheEditor(s)(ifapplicable)andTheAuthor(s)2020 Open Access This bookis licensed under the terms of the Creative Commons Attribution 4.0Inter- nationalLicense(http://creativecommons.org/licenses/by/4.0/), whichpermitsuse,sharing,adaptation, distribution andreproduction inanymediumorformat,aslong asyougive appropriate credit tothe originalauthor(s)andthesource,providealinktotheCreativeCommonslicenceandindicateifchanges weremade. Theimages or other third party material in this book are included in the book’s Creative Commons licence,unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthebook’s CreativeCommonslicenceandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthe permitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Écoled’ÉtédeProbabilitésdeSaint-FlourXLVIII-2018 Preface These lecture notesare intendedto accompanya single-semestergraduatecourse. They are meant to be entirely self-contained.All the theory required to prove the mainresultsispresentedandonlybasicknowledgeinprobabilitytheoryisassumed. In Chap.1, we describe the main storyline of this text. It is meant to be light bedtimereadingexposingthereadertothe mainresultsthatwillbepresentedand providingsome background.Chapter 2 introduces the theory of electric networks and discusses their highly useful relations to random walks. It is roughly based onChap.8ofYuvalPeres’ excellentlecturenotes[69].We thendiscussthecircle packingtheoremandpresentitsproofinChap.3.Chapter4discussesthebeautiful theorem of He and Schramm [40], relating the circle packing type of a graph to recurrenceandtransienceoftherandomwalkonit.Tothebestofourknowledge, their work is the first to form connections between the circle packing theorem and probabilitytheory.Next in Chap.5, we presentthe highly influential theorem of Benjamini and Schramm [11] about the almost sure recurrence of the simple randomwalkinplanargraphlimitsofboundeddegrees.Thenotionofalocallimit (also known as distributionallimit or Benjamini-Schrammlimit) of a sequence of finite graphs was introduced there for the first time to our knowledge (and also studiedbyAldous–Steele[3]andAldous–Lyons[2]);thisnotionishighlyimportant in probability theory as well as other mathematical disciplines (see [2] and the referenceswithin). In Chap.6, we provide a theorem from which one can deduce thealmostsurerecurrenceofthesimplerandomwalkonmanymodelsofrandom planar maps. This theoremwas obtained by Ori Gurel-Gurevichand Nachmias in [31]. Chapter7 discussesuniformspanningforestsonplanarmapsandappealsto thecirclepackingtheoremtoshowthatthefreeuniformspanningforestonproper planar maps is almost surely connected,i.e., it is in fact a tree. This theorem was obtainedbyHutchcroftandNachmiasin[45].WeclosethesenotesinChap.8with a descriptionof some relatedcontemporarydevelopmentsin thisfield thatarenot presentedinthistext. vii viii Preface Wehavemadeanefforttoaddvaluebeyondwhatisinthepublishedpapers.Our proofof thecircle packingtheoremin Chap.3 is inspiredbyThurston’sargument [82]andBrightwell–Scheinerman[13],butwehavemadewhatwethinkaresome simplifications;theproofalsoemploysaneatargumentduetoOhadFeldheimand OriGurel-Gurevich(Theorem3.14)whichmakesthedrawingpartoftheargument rather straightforward and avoids topological considerations that are used in the classical proofs. The original proof of the He–Schramm Theorem [40] is based on the notion of discrete extremal length which is essentially a form of effective resistance in electric networks (in fact, the edge extremal length is precisely an effectiveresistance,see[61,Exercise2.78]).We findthatourapproachinChap.4 using electric networksis somewhat more robust and intuitive to probabilists. We obtainaquantitativeversionoftheHe-SchrammTheoreminChap.4aswellasthe Benjamini–SchrammTheorem[11]inChap.5(seeTheorem5.8).Thesequantified versionsarekeytotheproofsofChap.6.Lastly,someaspectsofstationaryrandom graphsarebetterexplainedhereinChap.6thaninthepublication[31].Thevideoed lecturesofthiscoursetakenin48thSaint-Floursummerschoolareavailableatthe author’swebpagehttp://www.math.tau.ac.il/~asafnach/. Acknowledgments IwouldliketodeeplythankDanielJerison,PelegMichaeli,andMatanShalevfor typing, editing, and proofreading most of this text and for the many comments, corrections,andsuggestions.IamindebtedtoTomHutchcroftforhisassistancein writingtheintroductionandforsurveyingrelatedtopicsnotincludedinthesenotes (Chaps.1 and 8). I thank Sébastien Martineau,Pierre Petit, Dominik Schmid, and MateoWirthfortheircorrectionsandcommentstothistext.Iamalsogratefultothe participantsofthe48thSaint-FlourSummerSchoolanditsorganizers,Christophe Bahadoran, Arnaud Guillin, and Hacène Djellout, for a very enjoyable summer school. Iambeholdentomycollaboratorsonthesetopics:OmerAngel,MartinBarlow, Itai Benjamini, Nicolas Curien, Ori Gurel-Gurevich, Tom Hutchcroft, Daniel Jerison,GourabRay,SteffenRohde,andJuanSouto.Ihavelearnedalotfromour work and conversations. Special thanks go to Ori Gurel-Gurevich for embarking together on this research endeavor beginning in 2011 at the University of British Columbia,Vancouver,Canada. Many of the ideas and methodspresentedin these noteswereobtainedinourjointwork. Preface ix IamalsohighlyindebtedtothelateOdedSchrammwhosemathematicalwork, originality, and vision, especially in the topics studied in these notes, have been an enormous source of inspiration. It is no coincidence that his name appears on almostevery other page here.It has become routinefor my collaboratorsand I to askourselves“WhatwouldOdeddo?”hopingthatreflectingonthisquestionwould cutrightto the heartofmatters. SteffenRohde’swonderfulsurvey[71] ofOded’s workisverymuchrecommended. Lastly,IthankShiraWilkofandbabyAdaformuseandinspiration. TelAviv,Israel AsafNachmias1 July2019 1ThisprojecthasreceivedfundingfromtheEuropeanResearchCouncil(ERC)undertheEuropean Union’s, Horizon 2020 research and innovation programme (grant agreement number 676970, RANDGEOM). Contents 1 Introduction .................................................................. 1 1.1 TheCirclePackingTheorem........................................... 1 1.2 ProbabilisticApplications .............................................. 7 2 RandomWalksandElectricNetworks.................................... 11 2.1 HarmonicFunctionsandVoltages...................................... 11 2.2 FlowsandCurrents ..................................................... 14 2.3 TheEffectiveResistanceofaNetwork ................................ 17 2.4 Energy................................................................... 22 2.5 InfiniteGraphs .......................................................... 25 2.6 RandomPaths........................................................... 29 2.7 Exercises................................................................. 30 3 TheCirclePackingTheorem ............................................... 33 3.1 PlanarGraphs,MapsandEmbeddings................................. 33 3.2 ProofoftheCirclePackingTheorem.................................. 36 4 ParabolicandHyperbolicPackings........................................ 47 4.1 InfinitePlanarMaps..................................................... 47 4.2 TheRingLemmaandInfiniteCirclePackings........................ 48 4.3 StatementoftheHe–SchrammTheorem .............................. 50 4.4 ProofoftheHe–SchrammTheorem ................................... 52 4.5 Exercises................................................................. 59 5 PlanarLocalGraphLimits................................................. 61 5.1 LocalConvergenceofGraphsandMaps .............................. 61 5.2 TheMagicLemma...................................................... 64 5.3 RecurrenceofBoundedDegreePlanarGraphLimits................. 67 5.4 Exercises................................................................. 71 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.