ebook img

PIV Investigation of the Intake Flow in a Parallel Valves Diesel Engine Cylinder Jean APA Rabault PDF

122 Pages·2015·25.04 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview PIV Investigation of the Intake Flow in a Parallel Valves Diesel Engine Cylinder Jean APA Rabault

PIV Investigation of the Intake Flow in a Parallel Valves Diesel Engine Cylinder by Jean A. P. A. Rabault January 2015 Technical Reports from Royal Institute of Technology KTH Mechanics SE-100 44 Stockholm, Sweden 1 Preface The present Master thesis work was performed between July and December 2014 as part of a Double Degree diploma between E´cole Polytechnique, Palaiseau France and KTH, Stockholm. The work was carried out as a collaboration between KTH Mechanics department and the group in charge of Gas Exchange Specification and Simulation at Scania CV AB located in So¨dert¨alje, Sweden. January 2015, Stockholm Jean A. P. A. Rabault 2 J.A.P.A. Rabault PIV study of the Intake Flow in a Diesel Engine Cylinder 3 JeanA.P.A.Rabault2015, PIV Investigation of the Intake Flow in a Parallel Valves Diesel Engine Cylinder KTH Mechanics, SE–100 44 Stockholm, Sweden Abstract Preliminary designs for the cylinder heads of Scania’s next generation Diesel Engine have been investigated by the means of PIV measurements on a steady test rig. General structures present in the flow have been investigated, with a specific focus on Swirl motion due to its well documented impact on combustion e�ciency and pollutiongeneration. Thefirstsetofmeasurementswasacquiredinthetumbleplane. A method to perform e�ciently PIV measurements was introduced, which consists in rotating the experimental setup rather than the PIV measurement instruments. As a consequence, a considerable amount of work is saved and a great number of measurement planes can be acquired. This method has allowed to reconstruct a 3D3C picture of the flow in the cylinder. Such 3D3C direct measurement of flow in a test rig cylinder had not been reported previously in the literature, as far as the author is aware of it. The second set of measurements was acquired in the swirl plane. General patterns in the swirl velocity fields have been identified. The author introduces the hypothesis that shifting down the measurement position may, to some extend, beequivalenttoobservingtheflowevolveintimeintherealenginesituation. Measurement performed far enough under thevalvesexhibit clear and stableswirling vortex structure with the cylinder heads investigated. This may explain for the validity of the combustion models used in the industry that, despite apparent over simplification of the flow situation, have proved in good agreement with engine tests. Descriptors: Admissionstroke,Flowincylinder,Swirlmotion,Admissionchannels. 4 J.A.P.A. Rabault PIV study of the Intake Flow in a Diesel Engine Cylinder 5 J.A.P.A. Rabault PIV study of the Intake Flow in a Diesel Engine Cylinder Contents 1 Introduction 7 1.1 Introduction: need for Diesel engine improvement . . . . . . . . . . . 7 1.2 Development of Scania’s next generation engine . . . . . . . . . . . . 8 1.3 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Engine and flow background 10 2.1 Direct injection diesel engines . . . . . . . . . . . . . . . . . . . . . . 10 2.1.1 Strokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 Engine e�ciency . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.3 Swirl and Tumble . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.4 Flow coe�cient . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Combustion process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Flow inside a cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Compressible Navier-Stokes equation . . . . . . . . . . . . . . 17 2.3.2 Incompressible Navier-Stokes equation . . . . . . . . . . . . . 19 2.3.3 RANS decomposition and turbulence . . . . . . . . . . . . . . 19 2.3.4 Energy cascade and turbulence . . . . . . . . . . . . . . . . . 21 2.3.5 Anisotropy map . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Measurement technique, experimental configuration and post pro- cessing methods 23 3.1 Mono and Stereo PIV. . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.1 PIV overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.2 Correlation technique . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.3 Choice of the particles . . . . . . . . . . . . . . . . . . . . . . 25 3.1.4 PIV configuration and Stereo reconstruction . . . . . . . . . . 28 3.1.5 Basic optics considerations and image quality . . . . . . . . . 30 3.1.6 Scheimpflug criterion . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.1 Test rig and cylinder head . . . . . . . . . . . . . . . . . . . . 32 3.2.2 Measurement configurations . . . . . . . . . . . . . . . . . . . 32 3.2.3 Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.4 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.5 Pollution by particle deposition . . . . . . . . . . . . . . . . . 36 3.2.6 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.7 �t optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.8 Software used and processing principles . . . . . . . . . . . . . 39 3.2.9 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.10 Assessment of polariser film as a way to diminish reflections intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Order of magnitude analysis of the flow in the experimental cylinder . 45 6 J.A.P.A. Rabault PIV study of the Intake Flow in a Diesel Engine Cylinder 3.3.1 Overall engine parameters . . . . . . . . . . . . . . . . . . . . 45 3.3.2 Order of magnitude estimates of turbulence evolution during engine cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4 Method for obtaining 3D3C information from tumble plane measure- ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5 Post-processing techniques . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5.1 Considerations about RMS analysis . . . . . . . . . . . . . . . 48 3.5.2 Streamlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.5.3 Proper Orthogonal Decomposition (POD) . . . . . . . . . . . 49 3.5.4 Singular Value Decomposition (SVD) . . . . . . . . . . . . . . 51 3.5.5 Dynamic Mode Decomposition (DMD) . . . . . . . . . . . . . 52 3.5.6 General considerations for use of POD and DMD . . . . . . . 53 3.5.7 Other general flow analysis techniques . . . . . . . . . . . . . 54 3.5.8 Specificflowanalysistechnique: instantaneousswirlcentreiden- tification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.6 Uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.6.1 Confidence intervals and outliers . . . . . . . . . . . . . . . . 55 3.6.2 Time sampling of autocorrelated signals . . . . . . . . . . . . 58 3.7 Measurements of swirl, tumble and flow coe�cients in test bench . . . 60 4 Results and discussion 63 4.1 Measurement cases performed . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Quality assessment and uncertainty analysis . . . . . . . . . . . . . . 64 4.2.1 Quality of recorded and processed data . . . . . . . . . . . . . 66 4.2.2 Uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . 66 4.2.3 Anisotropy map . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3 Results from tumble plane measurements: one plane data . . . . . . . 68 4.3.1 Mean quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.2 POD modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4 Results from tumble plane measurements: 3D3C reconstruction . . . 74 4.5 Results from Swirl plane measurement . . . . . . . . . . . . . . . . . 77 4.5.1 Mean quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5.2 Instantaneous swirl center position . . . . . . . . . . . . . . . 81 4.5.3 POD modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.6 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.6.1 Agreement between di↵erent measurements and general flow features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.6.2 Regularisation with lower position and turbulence comparison with theory: hypothesis of similarities between evolution with time in the engine and lower vertical position in the test bench 85 4.6.3 Radial velocity profile in central swirl structure . . . . . . . . 88 4.6.4 Flow analysis by means of artificial velocity profiles . . . . . . 90 7 J.A.P.A. Rabault PIV study of the Intake Flow in a Diesel Engine Cylinder 4.6.5 2D divergence and local vorticity . . . . . . . . . . . . . . . . 91 4.6.6 Higher order derivatives: analysis of Navier-Stokes equation terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.6.7 Comparisons with other works . . . . . . . . . . . . . . . . . . 98 5 Summary and suggestion for future work 100 6 Acknowledgements - Tack 101 7 Bibliography 102 8 Appendix 1: Exhaustive swirl plane measurements 108 9 Appendix 2: Comparison between the swirling structures obtained in HSC and LSC 119 8 J.A.P.A. Rabault PIV study of the Intake Flow in a Diesel Engine Cylinder 9

Description:
Preliminary designs for the cylinder heads of Scania's next generation Diesel Engine have been investigated by .. head and to generate information about flow behaviour inside the cylinder during air admission. When the point where convolution is computed lies too close to the borders of Ω it is n
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.