ebook img

Pilot Scale Testing of Adsorbent Amended Filters under High Hydraulic Loads for Highway Runoff PDF

14 Pages·2017·1.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pilot Scale Testing of Adsorbent Amended Filters under High Hydraulic Loads for Highway Runoff

water Article Pilot Scale Testing of Adsorbent Amended Filters under High Hydraulic Loads for Highway Runoff in Cold Climates CarlosMonrabal-Martinez*,AamirIlyasandToneM.Muthanna DepartmentofCivilandEnvironmentalEngineering,NorwegianUniversityofScienceandTechnology, 7491Trondheim,Norway;[email protected](A.I.);[email protected](T.M.M.) * Correspondence:[email protected];Tel.:+47-735-947-45 AcademicEditor:GlennBrown Received:2January2017;Accepted:19March2017;Published:22March2017 Abstract: This paper presents an estimation of the service life of three filters composed of sand andthreealternativeadsorbentsforstormwatertreatmentaccordingtoNorwegianwaterquality standards for receiving surface waters. The study conducted pilot scale column tests on three adsorbentamendedfiltersfortreatmentofhighwayrunoffincoldclimatesunderhighhydraulic loads. The objectives were to evaluate the effect of high hydraulic loads and the application of deicingsaltsontheperformanceofthesefilters. Fromprevioustheoreticalandlaboratoryanalysis granulatedactivatedcharcoal,pinebark,andgranulatedolivinewerechosenasalternativeadsorbent materialsforthepresenttest. Adsorptionperformanceofthefilterswasevaluatedvis-à-visfour commonly found hazardous metals (Cu, Pb, Ni and Zn) in stormwater. The results showed that thefilterswereabletopasswaterathighinflowrateswhileachievinghighremoval. Amongthe filters,thefiltersamendedwitholivineorpinebarkprovidedthebestperformancebothinshortand long-termtests. TheadditionofNaCl(1g/L)didnotshowanyadverseimpactonthedesorptionof alreadyadsorbedmetals,exceptforNiremovalbythecharcoalamendedfilter,whichwasnegatively impacted by the salt addition. The service life of the filters was found to be limited by zinc and copper,duetohighconcentrationsobservedinlocalurbanrunoff,combinedwithmoderateaffinity withtheadsorbents. Itwasconcludedthatboththeolivineandthepinebarkamendedfiltershould betestedinfull-scaleconditions. Keywords: stormwater runoff; alternative adsorbents; pilot scale; hydraulic loading; adsorption; servicelife;toxicmetalremoval 1. Introduction Infiltrationbasedsolutionshavebeenshowntobeanefficientmethodfortreatinghazardous substances from stormwater in urban areas [1–4]. These solutions include different forms and functions, depending on the area of application, such as rain gardens, bioretention swales, and infiltrationtrenches,etc. Infiltrationbasedstormwateroptionsaimtorestore/mimicpre-development conditions[5]byreducingrunoffvolumes,trappingsediments,andmitigatingpeakflowrates.Insome cases, infiltrationbasedsystemsarealsodesignedtoremovedissolvedcontaminantsbyaddinga specificadsorbentlayer[6],orrelyingoncombinedeffectsofplantsandsoils—bioretention[7]. Heavy metalsarefoundinurbanrunofffrommultiplenonpointsourcessuchasvehiclecomponentswear, exhaustemissions,lubricants,andgalvanizedelementsalongroads,amongothers[8]. Thepresenceof thesemetalsvaryinbothspatialandtemporalresolution,aswellasphase(particulateanddissolved forms). Itisthelatterformthatisthemostbioavailableandhazardousforbiota[1,9]. Water2017,9,230;doi:10.3390/w9030230 www.mdpi.com/journal/water Water2017,9,230 2of14 Awiderangeofmaterialshavebeenidentifiedandtestedfortheirperformanceforremovalof heavy metals [10], nutrients [11], and organic contaminants [12], among others. These adsorbents materialsincludesecondarywastes,minerals,andbiologicalmaterials.Generally,adsorptionprocesses aredependentonthespecificsurfaceareaofthematerial,whichincreaseswithdecreasingparticle size. However, adecreaseintheparticlesizeleadstoalowerhydraulicconductivityofthefilters. Instormwatersolutionsthataredesignedforacertainallowableponding,suchasbioretentionareas, wetlands,anddetentionponds,alowerhydraulicconductivityandlargersurfaceareacanbeadequate given the pooling capacity of such facilities. On the other hand, in areas close to road surfaces or systemswithnopondingcapacity,therunoffmustbeinfiltratedasquickaspossibleforsafetyissues. Therefore,highhydraulicconductivityisanimportantdesignfeaturetoallowforahighhydraulic loading. Thisfavorsadsorbentswithalargerparticlesize. Fortheenduser,theservicelifeoftheinfiltrationbasedfacilityisalsohighlyrelevant,because it is an important factor in the selection decision. The service life of an adsorbent/filter is mainly determinedbyacombinationofpollutantconcentrationintheeffluent,pollutantaccumulationin thefilter,andlossofinfiltrationpotentialduetoclogging[13]. Severalstudieshavebeenundertaken toquantifytheservicelifeofthefiltersfromthepollutionperspective[13–16]. Batchstudiesmight beusedtopreselectpotentialadsorbentsbasedonadsorptioncriteria. Generally,isothermmodels areadoptedtofitexperimentalbatchdata. However,thesemodelsaremeantforgasadsorptionon solidsurfaces,whichdiffersfromsolution-solidconditionsoccurringininfiltrationbasedsystems. Additionally,assumptionsmadebyisothermmodelswillintroduceuncertaintieswhendetermining adsorption capacities of adsorbents. In contrast, column studies, which are also laboratory based tests, can best reproduce field conditions of varying inflows, increasing liquid to solid ratios over time,andinducingdynamicconditions. Breakthroughcurvesobtainedfromcolumnstudiescanhelp determinethevolumeofwatertreatedbeforethefilternolongercanmeetacertainpollutantremoval intheeffluent. Ontheotherhand,highintensityinflows,freezing-thawingcycles,andapplicationof deicingsaltsaregenerallyignoredduringtheevaluationoftheperformanceofthesefilters,whichcan affecttheadsorbentperformance. Consequently,thisposesanobstacleforanappropriatedesignof infiltrationbasedfacilities. Thisstudyevaluatedthreefilterscomposedofsandandthreealternativeadsorbents(pinebark, olivine, and charcoal) in a pilot scale column study under high hydraulic loads. The adsorbents wereidentifiedinapreviousstudy,whichusedmulticriteriaanalysisandbatchteststoevaluatethe upscalingpotentialofeightadsorbentmaterials[17]. Inthefirstphaseofthestudy,theinfluenceof highhydraulicloadsaswellasdeicingsaltsoverthepollutantretentionwasevaluated. Inthesecond phase,thelong-termperformancewasstudiedinordertoobtaindataforestimatingtheservicelifeof thematerials. 2. MaterialsandMethods 2.1. AdsorbentMaterials Alltheadsorbentmaterialsandthesand(Table1)wereobtainedbycommercialsupplierslocally. Thegranulatedactivatedcharcoal(extractedfromanthracitecoal)wasaSigmaAldrichASproduct (Oslo,Norway),thesandwasmanufacturedbyRådasandAB(Lidköping,Sweden),thepinebark PinusSylvestriswasprovidedbyNittedalTorvindrustrieAS(Bjørkåsen, Norway), andtheolivine wassuppliedbySibelcoNordicAS(Rud,Norway)andbelongstotheBlueguard®series. Charcoal andolivinewereusedwithoutanychemicalprocessingormodification. While,pinebarkwassieved <4mmparticlesizepriortouseinordertofavorwaterretention. Theadsorbentswereplacedinpilot scalecolumnswithcleanquartzsand,whichwasselectedforitsuniformparticlesizeandlittleorno backgroundcontamination. Therefore,theinfluenceofthesandonthehydraulicconductivityand removalperformancewasassumedhomogeneousthroughoutthestudy. Water2017,9,230 3of14 Table 1. Material properties of the sand and adsorbents used in the study. UC stands for uniformitycoefficient. Parameter Sand Olivine Charcoal PineBark ParticleDensityα(g/cm3) 2.66 3.12 1.91 - MaxDryDensityβ(g/cm3) 1.77 - - - Bulkdensity(g/cm3) 1.48 1.62 0.44 0.24 D γ(mm) 0.65 1.93 1.83 - 90 D γ(mm) 0.403 1.53 1.33 - 60 D γ(mm) 0.183 0.903 0.73 - 10 UC(D /D ) 2.22 1.66 1.85 - 60 10 BETSurfaceAreaδ(m2/g) 0.564 4.264 881.964 0.444 Notes:αDatafromthepresentstudyobtainedwithpycnometertest;βDatafromthepresentstudyobtainedwith proctorcompactiontest;γDatafromthepresentstudyobtainedfromparticlesizedistributioncurves;δDatafrom thepresentstudyobtainedwithBrunauer-Emmett-Teller(BET)test. 2.2. ColumnTests Theadsorbentsweretestedforremovaloffourdissolvedmetals(Cu,Pb,Ni,andZn)commonly foundinurbanandhighwayrunoffandofenvironmentalconcernforofficialauthoritiesduetotheir toxicitytowardsthebiotainthereceivingwaterbodies. Forthecolumntests,syntheticstormwater waspreparedinalargetank(1m3)bymixingtapwaterwithastocksolutioncontainingthemetals. Metalchloridesaltswereusedforpreparingthestocksolution,andwerechosenfortheadditional benefitofsimulatingsaltsinstormwater. Ontheotherhand,tapwatercontainsothermajorions(Na+, Ca2+,etc.),whichmakesitarealisticsurrogateforactualstormwater(Table2). Thetargetmetalswere addedinaquantitytoachieveintendedconcentrationof1mg/Lforeachmetalinthe1m3influent tank. Thereasonbehindthishighconcentrationswastobeabletoobtaindetectableconcentrations intheoutflowandearlybreakthroughsbecausehighadsorptionwasexpectedinthefilterbasedon priorbatchtests[17]. ThepHofthesyntheticstormwaterwasapprox. 7.5,whichissimilartovalues observedinlocalurbanrunoff. Table2.Majorconstituentsinthetapwater. Parameter Concentration(mg/L) Calcium 21.7 Sodium 4.45 Magnesium 0.89 Potassium 0.45 Chloride 7.46 Sulphate 2.5 Plexiglascolumnswith45cmlengthand10cmdiameterwereconstructedandusedinthestudy. The columns were filled with 35 cm sand overlying 5 cm of adsorbent (see Figure 1). Adsorbent placementatthebottomwillprotectthematerialfromeventualfrostanderosion. Inaddition,bottom placementforpinebarkmeanslessoxidationproblemsaslowerzoneswillremainwetterwithlower O availability. Thelength(40cm)representsminimumrecommendeddepthforbioretentionfacilities 2 inNorwegianclimate[18],wherethesefiltersmightpotentiallybeused. Three columns were set up for each filter media including a control column that was packed onlywithsand. Allcolumnswereoperatedatroomtemperature(20±2◦C)andthetapwaterused toproducethesyntheticstormwaterwasat8±2◦C.Multichannelperistalticpumpswithvariable flowwereusedforpumpingthesyntheticstormwater. Theflowrateswerebasedonthesaturated hydraulicconductivity(K )ofeachfilter,whichhasbeeninvestigatedseparately[19]. Therefore,full sat infiltrationatthelargestpossibleinflowratewasintendedwithnovisiblepondingwater. Water2017,9,230 4of14 Water 2017, 9, 230 4 of 14 Figure 1. Schematic overview of the column setup with adsorbents placed at the bottom. Figure1.Schematicoverviewofthecolumnsetupwithadsorbentsplacedatthebottom. The study was divided in two phases. In the first phase flow rates, supplied by the peristaltic Thestudywasdividedintwophases. Inthefirstphaseflowrates,suppliedbytheperistaltic pumps, were controlled and set at the Ksat of each filter. The objective was to verify the adsorption pumps,werecontrolledandsetattheK ofeachfilter. Theobjectivewastoverifytheadsorption capacity of the filters under high hydrausaltic loads, specifically under the largest inflow rate that is capacity of the filters under high hydraulic loads, specifically under the largest inflow rate that expected to not generate water ponding. The experimental columns were continuously run for is expected to not generate water ponding. The experimental columns were continuously run for approx. 14 h, and each column received a water volume of approx. 50 L (liquid to solid ratio LS = 11). approx. 14h,andeachcolumnreceivedawatervolumeofapprox. 50L(liquidtosolidratioLS=11). After passing this volume of water, one of the two duplicate columns for each media was taken aside Afterpassingthisvolumeofwater,oneofthetwoduplicatecolumnsforeachmediawastakenasideto to study the effect of road salt on the desorption of already immobilized metals. For the salt studytheeffectofroadsaltonthedesorptionofalreadyimmobilizedmetals. Forthesaltexperiment, experiment, the columns were initially fed with approx. 50 L (LS = 11) of plain tap water, and then thecolumnswereinitiallyfedwithapprox. 50L(LS=11)ofplaintapwater,andthenwiththesame with the same amount of a solution composed of tap water with 1 g/L NaCl. The concentration of amountofasolutioncomposedoftapwaterwith1g/LNaCl. TheconcentrationofNaClwasbased NaCl was based on common concentrations found in highway stormwater in Norway, similar to the oncommonconcentrationsfoundinhighwaystormwaterinNorway,similartothevalueadopted value adopted by previous studies [20]. In the second phase, long-term operation was the objective, bypreviousstudies[20]. Inthesecondphase,long-termoperationwastheobjective,andthestudy and the study continued in each of the remaining columns for 2.5 months (Table 3). Samples were continuedineachoftheremainingcolumnsfor2.5months(Table3). Sampleswerecollectedbiweekly collected biweekly from the effluents of every column and analyzed for the target metals. After the fromtheeffluentsofeverycolumnandanalyzedforthetargetmetals. Afterthecollection,pHand collection, pH and electroconductivity of the samples were measured, then samples were filtered electroconductivityofthesamplesweremeasured,thensampleswerefilteredthrough0.45µmpore through 0.45 µm pore membrane filters for analyzing dissolved fraction of the studied target metals, membranefiltersforanalyzingdissolvedfractionofthestudiedtargetmetals,andpreservedwith0.1M HanNdO preasceidrv.eSda mwpitlhes 0w.1e Mre sHtoNreOd3 aatc4id◦.C Saumntpilleths ewaenrael ystsoisrewdi taht a4 h°iCg hurnetsilo ltuhtei oannianlydsuisc twiviethc oau philgedh resolu3tion inductive coupled plasma HR-ICP-MS instrument from Thermo Fisher Scientific AS (Oslo, plasmaHR-ICP-MSinstrumentfromThermoFisherScientificAS(Oslo,Norway). Eachindividual Norway). Each individual sample was scanned three times and the results were corrected for blank samplewasscannedthreetimesandtheresultswerecorrectedforblanksamples. Thequantification samples. The quantification detection limits for Ni, Zn, Cu and Pb was 0.015, 0.025, 0.03, and 0.002 µg/L, detectionlimitsforNi,Zn,CuandPbwas0.015,0.025,0.03,and0.002µg/L,respectively. respectively. Table3.Averagevolumepercolumn(AV)andhydraulicloadingrate(HLR)usedduringthetwophases Table 3. Average volume per column (AV) and hydraulic loading rate (HLR) used during the two ofthestudy.CRTstandsforcolumnrunningtime. phases of the study. CRT stands for column running time. IInnfflluueennttT Typyepe ExEpxepreimriemnetnPht aPshease AAVV(L ()L) HHLLRR ((ccmm//hh)) CCRRTT ((DDaayyss)) SSyynntthheettiiccs stotormrmwwataetrer 1 1 5050 4477 00..66 SSaallttw waatetrer 1 1 5050 4477 00..66 Syntheticstormwater 2 2500 18.8 73 Synthetic stormwater 2 2500 18.8 73 SSiimmiillaarr ccoolluummnn ssttuuddiieess ooff mmeettaall aaddssoorrppttiioonn aanndd nnuuttrriieenntt rreemmoovvaall aarree ffoouunndd iinn tthhee lliitteerraattuurree ((TTaabbllee 44)).. IInn tthhiiss ssttuuddyy,, lloonngg--tteerrmm ddaattaa wwaass nneeeeddeedd ttoo eexxpplloorree tthhee eexxhhaauussttiioonn ccaappaacciittyy ooff tthhee ssttuuddiieedd fifilltteerrss bbeeccaauussee iinnppuutt ccoonncceennttrraattiioonnss wweerree llooww iinn ccoommppaarriissoonn ttoo tthhee ootthheerr ssttuuddiieess.. OOnn tthhee ootthheerr hhaanndd,, hhiigghh hhyyddrraauulliiccr raatetessw wereereu suesdedto tsot ustduydtyh ethree mreomvaolvcaalp caacpitaycoitfyt hoef stehfiesltee rfsiltuenrds eurnidnteern isneteinnflseo winrfalotews wraittehs ewxpitehc etexdpeloctweder locownetra cctotnimtacets twimitehs twheitfihl tthere. filter. Water2017,9,230 5of14 Table 4. Experimental characteristics of similar column studies. AV stands for average volume per column, HLR for hydraulic loading rate, CRT for column running time, IC stands for input concentration,MDformediadepth,CDforcolumndiameter,andTPfortargetpollutants. HLR CRT AV(L) IC(mg/L) MD(cm) CD(cm) TP Reference (cm/h) (Days) 120 70.8 27 5–16 23 1.8 MTBE,Naphthalene,Zn [15] 480 10 90 1 20 5.08 Cd,Cu,Pb,Zn [13] 300 - 70 0.004–0.28 800 37.7 Cd,Cu,Pb,Zn [21] 158 124 30 2.5–5 40 2 Cu,Ni,Zn [22] 300 4.1 183 0.048–0.6 31 31 Zn,Cu,Pb,Cd [23] 9 1.06 2 0.08–0.6 3.5 1.9 Zn,Pb,Zn [14] 2550 18.8 133 1 40 10 Zn,Pb,Ni,Cu Thisstudy 2.3. HydrologicalPerspective Inordertorelatethesimulatedflowsbacktothedimensionofthestormevents,thefollowing hydraulicapproachispresented. Thisapproachisconnectedtothefirstphaseoftheadsorptionstudy, inwhichtheinfluentratewasadjustedtomatchtheK ofeachofthemedia. sat Inthelaboratorysetup(Figure1), thecolumnactsasaninfiltrationbasedsystem(P)andthe pumped water from the tank represents the urban runoff from impervious surfaces (I). The ratio betweenimpervioustoperviousarea(I/P)isoftenusedtosizesuchfilters[24,25]. Inareaswithahigh percentageofimpervioussurfacessuchasroads,sidewalks,roofs,etc.,anempiricalrunoffcoefficient (C)closeto1canbeassumed. Equation(1),whichisbasedontherationalmethod,allowsforcalculatingtheidealstormintensity (SI)in(mm/h)thatwillgeneratetheHLRin(mm/h)appliedonthecolumnsthroughtheperistaltic pump. Foracertainhydraulicload,theintensityofthestormeventisindirectlylinkedtothesizeof thefictitiouscatchmentfeedingthecolumns(I). HLR SI= (1) C·I/P 2.4. ExpectedServiceLife Theresultsfromthesecondphasewereusedtoestimatecumulativeadsorptioncapacitiesofthe differentadsorbentamendedfiltersforthetargetmetalsunderthegivenconditions. Thecumulative adsorptionforeachmetal,q(mg/kg),wasobtainedfromEquation(2). (cid:82)Vd(Ci−Ce)·dV q= 0 (2) M where Ci is the influent concentration (mg/L), Ce is the effluent concentration (mg/L), Vd is the cumulative volume passed until a certain % removal (L), and M is the amount of material in the filter(kg). Expectedcumulativepollutantretention(mg)wasobtainedastheproductoftheareaofthefilter, density,filterdepth,andqattherequiredremoval. Expectedpollutantinputload(mg/year)was obtainedastheproductoftheaveragedissolvedpollutantconcentrationmeasuredatlocalstreets, annualprecipitationdepth,areaofthetributarycatchment,andavolumecapturefactorof0.9,basedon internationaldesignguidelines. Theexpectedservicelife(years)wasobtained,dividingtheexpected cumulativepollutantretentionatarequiredremovalbythepollutantloadexpectedtobetreatedby thefiltrationfacility. Water2017,9,230 6of14 3. ResultsandDiscussion Water 2017, 9, 230 6 of 14 3.1. ControlofFlowrate,FirstPhase 3. Results and Discussion Inthisphase,flowratewascontrolledandfrequentsamplingperformedtocollectenoughdata toeva3l.1u.a Cteontthroel pofe Frfloowrmrataen, Fceirsitn Pthhaeses horttermofthedifferentfiltersunderhighhydraulicloads. In this phase, flow rate was controlled and frequent sampling performed to collect enough data 3.1.1. MetalRemovalbyAdsorbentAmendedFilters to evaluate the performance in the short term of the different filters under high hydraulic loads. Figure2presentsthepercentageremovalofthefourtargetmetals,bythreeadsorbentamended 3.1.1. Metal Removal by Adsorbent Amended Filters filtersforstormwater,asafunctionofporevolumeofsyntheticstormwaterpassedthroughthefilter. InthisstuFdiyg,uoren e2 pproerseenvtosl tuhme peeerqceunatlaegde troem16o0v0alc omf 3thaep fpouror xta.ragnedt mcoertarelss,p boyn tdhreede taodsthorebvenotl uammeenodcecdu pied byvofiildtesrisn foar csteorrtmaiwnactoerl,u ams an f.uIntcvtiaorni eodf pfororem vocloulmume onf styoncthoelutimc sntobrmecwaautseer poafsdseidff ethreronutgmh athtee rfiialtlesr,. bulk In this study, one pore volume equaled to 1600 cm3 approx. and corresponded to the volume occupied densities and different porosities. From the curves in Figure 2, it is clear that all of the adsorbent by voids in a certain column. It varied from column to column because of different materials, bulk amendedfiltershadaveryhighremovalrates(>99%incaseofPb)evenunderconsiderablehigh densities and different porosities. From the curves in Figure 2, it is clear that all of the adsorbent hydraulicloads. TherearesomefluctuationsandvariationsintheadsorptionbehaviorofCuandZn amended filters had a very high removal rates (>99% in case of Pb) even under considerable high bothonthepinebarkandtheolivineamendedfilter,whichcouldbeduetovariableflowpatterns hydraulic loads. There are some fluctuations and variations in the adsorption behavior of Cu and Zn insideboththe ognr atvhiet ypibnaes beadrkfi latnerd. tThhee oglievnintlee aimncernedaesdin fgiltterre,n wdhfiocrh rceomulodv bael odfuteh teos evatwriaobmle efltoawls poanttpeirnnes bark andoinlisvidinee thpeo ginratsvittoy tbiamseedd feilpteern. dTheen cgyenotflea idnscorerapstiinogn trreenadc tfioorn rse.mHoovwal eovf ethr,eisne ctwono tmraesttaltso oPnb p,iCneu and Zn,thbearrke manodv oallivoifnNe piodiindtsn too ttifmolel odweptehnedesnamcye opf aadttseorrnptiinonth reeaccatisoenos.f Hthoewfielvteerr, ainm ceonndtreadst wtoi tPhb,c Chaur coal. Thedaencdre Zanse, tohfeN reimreomvaolv oafl Nwii tdhidin ncoret afosilnlogww thaete srapmaes speadttienrnd iicna ttehse tchaaste Nofi thhaes failtreerl aatmiveenldyeldo wwiathffi nity forthcehacrhcaoraclo. Tahl,ea dnedcrweaisteh oifn Ncrie raesminogvavl owluithm iencorfeapsainssge wdawtear tpearstshede cinodmicpateetsi ttihoant Nfoir htahse as rietelastimvealyy also low affinity for the charcoal, and with increasing volume of passed water the competition for the sites haveincreased. Nevertheless,withtheexceptionofcharcoalvis-à-visNi,thefluctuationsinremoval may also have increased. Nevertheless, with the exception of charcoal vis-à-vis Ni, the fluctuations ofmetals(±1%–2%)ontherestoftheadsorbentsweresmall,whichdemonstratesthatthepresented in removal of metals (±1%–2%) on the rest of the adsorbents were small, which demonstrates that the filterswouldperformrobustlyintheactualconditions. presented filters would perform robustly in the actual conditions. Pb Removal Zn Removal 100 100 al 98 al 95 v v o 96 o m Olivine AF m 90 e 94 e Olivine AF R R % 92 Pine Bark AF % 85 Pine Bark AF Charcoal AF Charcoal AF 90 80 0 10 20 30 40 0 10 20 30 40 Pore Volume Pore Volume Ni Removal Cu Removal 100 100 l al 95 a 80 v v o mo 60 Olivine AF em 90 Olivine AF e R % R 40 Pine Bark AF % 85 Pine Bark AF Charcoal AF Charcoal AF 20 80 0 10 20 30 40 0 10 20 30 40 Pore Volume Pore Volume Figure 2. Percentage removal of the four toxic metals as a function of pore volume. Note that the Y- Figure2.Percentageremovalofthefourtoxicmetalsasafunctionofporevolume.NotethattheY-axis axis is different in each case. AF stands for amended filter. isdifferentineachcase.AFstandsforamendedfilter. Water2017,9,230 7of14 3.1.2. DesorptionofMetalsDuetoSalts Thecolumnswerefedwithsyntheticstormwatercontinuouslyforapprox. 14h(timetoreach a liquid to solid ratio of 11), then one of the two replicate columns was taken apart to study the influenceofsaltapplicationondesorptionofalreadyadsorbedmetals. Table5showstheresultsof metalrelease(inpercentage)fromthecolumnsasafunctionofporevolume. Theresultsshowthat thesalinesolutionhadvariableeffectsonthethreeadsorbentamendedfiltersandthefourmetals. Asmallreleaseofmetals(<3%)wasobservedinmostofthefilters. Thisrelativelowreleaseindicates thattheadsorptionwasstableandsaltswouldnothaveamajorinfluenceonthemetalreleaserates. Thisfindingisinagreementwith[26], whichhaveshownthatNaClhasthelowestimpactonthe desorptionofalreadymobilizedmetalscomparedwithotherstudieddeicers. Additionally,[20,27] reportedthatmetalsadsorbedonsoilsdesignedforbioretentionwerescarcelyleachedduetoNaCl applicationsand, therefore, retentionundercoldclimateconditionsislikelytobeeffectiveforthe studied purpose. However, [28] detected a significant impact of salt addition on the removal of dissolvedPbandCu,whichmightbeduetothefactthatthesaltfavorsdissolutionoforganicmatter whichhasastrongaffinityofthesemetals. Inthepresentstudy,ahighreleaseofNi(9%–15%)fromthe charcoalamendedfilterwasdetected. Thisbehaviormightbeduetothefactthatcharcoalhasbeen foundtohavequitelowaffinityfortheNi,whichallowsNatoreplaceiteasilythroughionexchange. Furthermore,bindingforcesofadsorbedcationsarealsodependentonhydratedradiusofthedivalent ionsaswellasrelativeconcentrations,whichmeansthatsodium,duetosmallerhydratedradiusand largerconcentrations,willfaceoptimalconditionsforreplacingadsorbedNi. Thereleasebehaviorwithregardstothesamemetaldiffersfromadsorbenttoadsorbent. Asan example,Ni,whichshowsanincreasingtrendbothinthecaseofthecharcoalandtheolivineamended filter, is decreasing with increasing pore volume in the case of the filter amended with pine bark. However,commonaspectsamongadsorbentsareobserved,forexample,extremelylowreleaseof Pb. ThismightindicatethatPbisdifficulttoexchangebecauseofhavingsmallerhydratedradius andhencebeingmorestronglyadsorbedtothesiteofthenegativecharge. Moreover,Pbmightform innerspherecomplexeswiththechargesites, whichfurtherreducesthechancesofPbadsorption reversingitself. Similarly,Ni,Zn,andCumobilizationfromtheolivineandthecharcoalamended filterfollowagentleincreasingtrendwithporevolume. Thisshowsthattheirdesorptionisdependent ontheexchangeprocesswithNa. Nonetheless,withtheexceptionofNi,thereleaseofmetalsfrom all presented filters is below 3%, which is an encouraging aspect as this indicates that a minimal environmentalimpactcanbeexpectedinfullscalesystems. Table5. Percentagedesorptionoffourmetalsasafunctionofporevolumefromthreealternative filters.Notethattheporevolumesaredifferentineachcase.NAstandsfornotavailableandAFfor amendedfilter. CharcoalAF OlivineAF PineBarkAF Pore Pore Pore Volume Pb Ni Cu Zn Volume Pb Ni Cu Zn Volume Pb Ni Cu Zn (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 2.8 <0.01 9.37 0.04 0.17 3.4 <0.01 0.06 0.41 0.20 2.7 0.02 2.15 0.23 2.78 8.6 <0.01 7.72 0.12 0.53 10.3 <0.01 0.07 0.27 0.21 8.2 0.03 2.62 0.35 2.72 14.3 0.01 5.57 0.09 0.32 17.3 0.01 0.23 0.49 1.89 13.7 0.04 1.73 0.34 1.39 20 0.01 15.26 0.11 0.49 24.2 0.02 0.26 1.13 2.02 19.2 0.02 1.19 0.24 1.43 25.8 0.03 9.65 0.11 0.36 31 0.01 0.34 1.06 2.09 24.6 0.04 2.06 0.31 1.65 31.5 0.01 11.64 0.14 0.41 38 NA NA NA NA 30.1 0.02 1.91 0.41 1.28 3.1.3. SimulatingStormEvents Table6showsthat,inthecaseofthecharcoalamendedfilter,thehydraulicrateappliedtothe columns corresponds with the runoff generated by a storm event with an intensity of 12 mm/h. Thisstormintensityisslightlyhigherthanatwoyearreturnperiodandonehourdurationstormevent inthecityofTrondheim(10.7mm/h). Inotherwords,ifthiseventfellinanimperviouscatchment Water2017,9,230 8of14 50timesbiggerthanthefacility(I/P=50),itcouldbehandledbythisfilterwithoutponding. Onthe otherhand,thefiltercomposedwithpinebarkandsandwouldonlybeabletomanagecompletelya stormintensityof8.5mm/hforthesametributarycatchment. Thecloggingprocess,whichwillhave anegativeimpactontheactualinfiltrationcapacityinafieldapplication,wasnotconsideredinthe calculations. However,K values,whichwereusedtodimensionthesesystems,maycounterbalance sat thecloggingriskbecausethesevaluesrepresentaconservativeestimateofthepotentialinfiltration rate[29]. Table6.Hydrologicalapproachusingformula1duringthefirstphaseoftheadsorptiontest.PSstands forpumpspeed,HLRforhydraulicloadingrate,I/Pforimpervioustoperviousratio,SIforstorm intensity,andAFforamendedfilter.Cistheempiricalrunoffcoefficient. Filter PS(mL/min) HLR(cm/h) I/P SI(mm/h)ifC=0.9 CharcoalAF 72.2 55 50 12 OlivineAF 58.7 45 50 9.9 PinebarkAF 51.1 39 50 8.5 3.2. ControlofVolumes. SecondPhase Inthisphase,highloadingwassimulatedbypassinglargevolumes(approx. 2500Lpercolumn) tostudythelong-termperformanceoftheadsorbents. MetalRemovalbyAdsorbentAmendedFilters InFigures3–5,theresultsregardingremovalofthetargetmetalsoverincreasingporevolume areshown. Lookingattheresults,completeexhaustionwasonlyobservedinthefilteramendedwith charcoalforNi. Thefiltercomposedofcharcoalandsandshowedthelowestaffinityforthetarget metals,whichisinagreementwithresultsfromasimilarstudy[26]. Incontrast,theolivineamended filterwasstillachieving50%removalforallfourmetals. Figure3showsthat,inthecaseofthefilteramendedwitholivine,theremovalcurvesofalltarget metalsfollowanon-lineardecreasingtrend. TheremovalofPb,Ni,andZnshowsasharpdecrease after1200porevolumes. Thismightindicatethatsphericalshapeallowstheinfluenttobypassthe olivinesurfaces. Furthermore,sphericalshapeslimittheexposedsurface,whichasitbecomescovered withmetalsstartstoreleasesomeintothesolution. Additionally,adsorptionanddesorptionmight haveoperatedsimultaneouslyduetothelengthoftheexperimentaswellasfluctuationsintheflow rate. Theuseofolivineasadsorbentfordissolvedmetalsisrelativelynew,andthenatureofitscharge sites/surfacefunctionalgroups,andremovalmechanismsunderdifferentexperimentalconditions havenotbeenfullyevaluatedyet. Therefore,toelucidatemainmetalremovalmechanismsofolivine andtheirvariabilityinresponsetooperationalfactorswouldrequirefurtherdetailedinvestigation. Inthecaseofpinebark(Figure4),theshapesofthecurvesforPb/CuandNi/Znaredifferent. PbandCushowedahighremovalpercentage,83%and77%respectively,aftermorethan1500pore volumes. However, Ni adsorption was close to exhaustion (Figure 4b), which would control the operationallifeeventhoughitstillhasveryhighaffinityforuptakeofPbandCu. Asimilaradsorption sequence for pine bark and the studied heavy metals have been previously reported in a batch study[30]. Unliketheotheradsorbents,pinebarkhaslowersurfaceareabutachievedahighremovalof metals. This can be attributed to different adsorption mechanism on pine bark, which has been attributedtocompoundssuchaspectin,lignin,andtannin[31]thatprovidecarboxylic,phenolic,and hydroxylgroupsfortheadsorptionofmetals. Ontheotherhand,pinebarkispronetoleachingof some of these organic compounds and dissolved organic carbon (DOC), which can interfere with theadsorptionprocessduetocomplexationofdissolvedmetalssuchasCuwithDOC[22]. Several treatments have been reported in the literature to prevent the release of soluble organics, which Water2017,9,230 9of14 can color and contaminate the effluent [32]. However, additional treatments can also reduce the attractivenessofpinebarkamendedfiltersduetoincreasedcostsassociatedwithpre-treatmentand/or post-treatmentdisposalofchemicals. Forthecharcoalamendedfilter(Figure5),theremovalofmetals,withtheexceptionofCuand Pb, decreased sharply within the first 200 pore volumes. For reduced adsorption of Zn and Ni as comparedtotheothertwometals,variablebindingmechanisms,competitionfromothercationsand Water 2017, 9, 230 9 of 14 Water 2017, 9, 230 9 of 14 dissolvedorganiccarbonintapwater,couldbetheprobablecause. Apreviousstudy[33]reportedthat PbanddisCsoulvfeodr moregdancioc vcaarlebnont oinr statrpo wngatbero, ncdouslwd ibteh tbhieo psororbbaebnltes c.aHusoew. Aev perre,vNioiuasn sdtuZdny g[3e3n] erreaplolyrteadd sorb dissolved organic carbon in tap water, could be the probable cause. A previous study [33] reported that Pb and Cu formed covalent or strong bonds with biosorbents. However, Ni and Zn generally onwethaakt ePlbe catnrods tCauti cfobrmineddin cgovsaitleens.t Tohr isstrkoinngd boofnbdisn wdiinthg bbieohsoarvbieonrtsc.a Hnorweseuvletri,n Nrie danudc eZdna gdesnoerrpaltliyo nfor certaiaanddmssooerrbbta oolsnni fwwteheaaekkr eeeillseeccattrrcooosstmtaattpiicce tbbitiininoddniinnfggr o ssmiitteeoss..t hTTehhriissi okkniinsndd(i .ooeff., bbCiinnad2d+iinn).ggH bboeewhhaaevvviiooerrr , cctaahnne crreeossnuucllett niinntr arreetiddouuncceeoddf Ca2+ adsorption for certain metals if there is a competition from other ions (i.e., Ca2+). However, the inouardssyonrpthtieotnic fsotro rcmertwaiant emrewtaalss sifu tbhsetraen itsia all ycolmowpettoitihona vferocmau ostehdera nioynss u(bi.es.t,a Cntai2a+)l. iHntoewrfeevreern, ctehein the concentration of Ca2+ in our synthetic stormwater was substantially low to have caused any adsorcpotnicoenntorfatmioent aolsf oCna2c+ hianr coouarl .synthetic stormwater was substantially low to have caused any substantial interference in the adsorption of metals on charcoal. substantial interference in the adsorption of metals on charcoal. Olivine AF Olivine AF 120 120 100 100 l 80 valova 80 Pb om 60 Pb % Rem% Re 464000 NNCuii Cu 20 Zn 20 Zn 0 0 0 500 1000 1500 2000 0 500 1000 1500 2000 Pore Volume Pore Volume Figure 3. Percentage removal of the four metals by olivine amended filters as a function of pore FigurFeig3u.rPee 3rc. ePnetracgenetraegme orevmaloovfatl hoef ftohuer fmouert amlsetbaylso bliyv ionleivainme eanmdeenddfiedlt efrilstearss aafsu an cfutinocntioofnp oofr epovroel ume. volume. AF stands for amended filter. AFstvaonldusmfeo. rAaFm steannddesd fofir latemr.ended filter. Pine bark AF Pine bark AF 120 120 100 100 valoval 8800 Pb om 60 Pb Rem% Re 6400 NNii % 40 Cu Cu 20 Zn 20 Zn 0 0 0 500 1000 1500 2000 0 500 1000 1500 2000 Pore Volume Pore Volume (a) (a) Figure4.Cont. Water2017,9,230 10of14 Water 2017, 9, 230 10 of 14 Water 2017, 9, 230 10 of 14 1 0.19 00..98 00..87 Pb 00..76 C000..65 PNbi C/0 C00..54 Ni C/ Cu 00..43 Cu 00..32 Zn 00..21 Zn 0.10 0 0 500 1000 1500 2000 0 500 Pore1 V00o0lume 1500 2000 Pore Volume (b) (b) Figure 4. Percentage removal (a) and breakthrough curve (b) of the four metals by pine bark amended Figure4.Percentageremoval(a)andbreakthroughcurve(b)ofthefourmetalsbypinebarkamended Ffiilgteurrse a4s. Pae frucenncttaiogne roefm poovrael v(ao)l uanmde .b rAeFak sttharnodusg hfo cru arvmee (nbd) eodf tfhilet efor.u Cr m aentda lsC b0 ya rpei nteh eb aerfkf laumenetn danedd filtersasafunctionofporevolume.AFstandsforamendedfilter.CandC aretheeffluentandinfluent finilftleures nats m ae tfauln ccotinocne notfr aptoiorne sv, roeluspmeec.t ivAeFl ys. tands for amended filter. C an0d C0 are the effluent and metalconcentrations,respectively. influent metal concentrations, respectively. Charcoal AF Charcoal AF 120 120 100 100 l 80 a v lo 80 Pb vam 60 moRe 60 PNbi Re% 40 NCui % 40 Cu 20 Zn 20 Zn 0 0 0 500 1000 1500 0 500 Pore Volume 1000 1500 Pore Volume Figure 5. Percentage removal of the four metals by charcoal amended filters as a function of pore Fviogluumree 5. .A PFe srctaenndtasg feo rr eammoevnadle odf ftilhtee rf. our metals by charcoal amended filters as a function of pore Figure5. Percentageremovalofthefourmetalsbycharcoalamendedfiltersasafunctionofpore volume. AF stands for amended filter. volume.AFstandsforamendedfilter. The low removal of Ni by charcoal could also be due to the pH of the inflow solution, at 7.5, whileT hope tliomwa lr Nemi aodvsaol ropft iNoni boyc ccuhrasr acto aplH c o6u [l3d4 ]a. lHsoo wbee vdeure, ctooa tlh bea pseHd oadf sthoreb iennftlo, aws isno ltuhtiiso cna, saet, 7h.a5s, Twphohieinlleto oowpf trziememraolo cNvhaia larodgfeso Nartpi tbpioyHnc 7oh.ca2cr uc[3ros5a ]al, tc wpoHhuil cd6h [ a3ils4s ]oc. lHboesoewd tueove etthro,e c tophaHel p boaHfs etodhfe at hdinesfolirunbeflenontwt. , Tashso eilnrue ttfhiooirsne ,c, aatshtee7, .hp5aH,sw hile optimpcaoolninNdti itoiaofd nzsse oarrorpe ctfihaoavnrogoreac bcalute r pfsoHar tc7pa.2tHi o[3n65ic[]3, m4w]e.htHaiclh oa wdisse ocvrleporst,ieoc noto.a Althbneao stpehHder aordef satoshorenb aeinbnfltle,u aeesxnpti.nl aTnthhaeitsrioecfnoa rsfoee,r, thlhoaews ppNHoii ntof zeroccaohdnasodrrgitpeitoianotsn p acHroeu 7flad.2v ao[lr3sao5b ]bl,eew fdohuri ecc hatotii osthnceilc on msaeteuttraoel taohdfe sthopreHp atdioosfnot.r hbAeenniont,t flhweuhre irncehta. siTso nhdaeebrrilevef eoedrx epf,rloathnmae taipo mHn efctoaorm nloodrwipt ihNoinci sare asodusorcrep—tioann tchorualcdit ea lcshoa brceo daul.e F toou trhieer ntraatunrsefo ormf t hine faradrseodr bsepnetc,t rwohscicohp yis (dFeTrIiRv)e dd aftrao mfro am m [3e6ta] mshoorpwheidc favorableforcationicmetaladsorption. AnotherreasonableexplanationforlowNiadsorptioncould sthoautr caen—tharnatchirtea cbitaes cehda rccaorablo. nFso ucroinert atirna nlsofwor mox iyngfreanr esdu srpfaeccet rofusncocptiyo n(FalT IgRr)o dupatsa, fwrohmic h[3 6c]a nsh oawffeecdt alsobeduetothenatureoftheadsorbent,whichisderivedfromametamorphicsource—anthracite tahdasto rapnttihorna ocift me ebtaaslse dsu cchar abso Nnsi . Acodndtaitiino nlaolwly , oaxdysgoerpnt isounr ofafc Ne i fhuansc btieoenna rle pgroorutepds t, ow bhe iscehv ecraanl oarfdfeercst charcoal. Fouriertransforminfraredspectroscopy(FTIR)datafrom[36]showedthatanthracitebased aodf smorapgtnioitnu dofe mloewtaelrs sthuachn aost hNeir. Amdedtailtsio snuaclhly ,a asd Csour patt iponH o <f N8 i[ 3h7a]s. bZene na nredp oPrbt esdh otow beed s einvietriaalll yo rhdiegrhs carbonscontainlowoxygensurfacefunctionalgroups,whichcanaffectadsorptionofmetalssuchas oafff imniatgyn bituutd iet dloewcleinr etdh aonv oerth teimr me, ewtahlsic shu icnhd aicsa Cteus asat tpuHra t<io 8n [o37f ]a. dZsno rapntdio nP bc asphaocwiteieds ionfi ttihalelsye htiwgho Ni. Aadffdiniittiyo nbaultl yit, dadecsloinrepdt ioovnero ftiNmie,h washibchee inndriecpatoerst esadtutorabtieons eovf eardasloorprdtieorns coafpmaciatgiens iotuf dtheesloe wtweor than othermetalssuchasCuatpH<8[37]. ZnandPbshowedinitiallyhighaffinitybutitdeclinedover time,whichindicatessaturationofadsorptioncapacitiesofthesetwometalsorincreasedcompetition forlimitedbindingsites. Thisemphasizesthemetamorphicnatureofcharcoalassuitableforremoval

Description:
adsorbent amended filters for treatment of highway runoff in cold climates under Adsorption performance of the filters was evaluated vis-à-vis four.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.