ebook img

Piecewise Deterministic Processes in Biological Models PDF

177 Pages·2017·4.794 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Piecewise Deterministic Processes in Biological Models

SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY  MATHEMATICAL METHODS Ryszard Rudnicki Marta Tyran-Kamińska Piecewise Deterministic Processes in Biological Models 123 SpringerBriefs in Applied Sciences and Technology Mathematical Methods Series editor Anna Marciniak-Czochra, Heidelberg, Germany More information about this series at http://www.springer.com/series/11219 ń Ryszard Rudnicki Marta Tyran-Kami ska (cid:129) Piecewise Deterministic Processes in Biological Models 123 Ryszard Rudnicki Marta Tyran-Kamińska Institute of Mathematics Institute of Mathematics Polish Academy of Sciences University of Silesia Katowice Katowice Poland Poland ISSN 2191-530X ISSN 2191-5318 (electronic) SpringerBriefs inApplied SciencesandTechnology SpringerBriefs inMathematical Methods ISBN978-3-319-61293-5 ISBN978-3-319-61295-9 (eBook) DOI 10.1007/978-3-319-61295-9 LibraryofCongressControlNumber:2017945225 ©TheAuthor(s)2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The aim of this book is to give a short mathematical introduction to piecewise deterministic Markov processes (PDMPs) and to present biological models where they appear. The book is divided into six chapters. In the first chapter we present some examples of biological phenomena such as gene activity and population growth leading to different type of PDMPs: continuous-time Markov chains, deterministicprocesseswithjumps,dynamicalsystemswithrandomswitchingand point processes. The second chapter contains some theoretical results concerning Markov processes and the construction of PDMPs. The next chapter is an intro- duction to the theory of semigroups of linear operators which provide the primary tools in the study of continuous-time Markov processes. In the fourth chapter we introduce stochastic semigroups, provide some theorems on their existence and findgeneratorsofsemigroupsrelatedtoPDMPsconsideredinthefirstchapter.The next chapter is devoted to the long-time behaviour (asymptotic stability and sweeping) of the stochastic semigroups induced by PDMPs. In the last chapter we applythegeneralresults,especiallyconcerningasymptoticbehaviour,tobiological models. Thebookisdedicatedtobothmathematiciansandbiologists.Thefirstgroupwill find here new biological models which lead to interesting and often new mathe- matical questions. Biologists can observe how to include seemingly different bio- logical processes into a unified mathematical theory and deduce from this theory interesting biological conclusions. We try to keep the required mathematical and biological background to a minimum so that the topics are accessible to students. v vi Preface Acknowledgements This research was partially supported by the National Science Centre (Poland) Grant No. 2014/13/B/ST1/00224. The authors are grateful to Michael C. Mackey and Katarzyna Pichór who read the manuscript and made useful suggestions for improvements. Katowice, Poland Ryszard Rudnicki May 2017 Marta Tyran-Kamińska Contents 1 Biological Models ... .... ..... .... .... .... .... .... ..... .... 1 1.1 Introduction ... .... ..... .... .... .... .... .... ..... .... 1 1.2 Birth-Death Processes..... .... .... .... .... .... ..... .... 2 1.3 Grasshopper and Kangaroo Movement.... .... .... ..... .... 3 1.4 Velocity Jump Process .... .... .... .... .... .... ..... .... 4 1.5 Size of Cells in a Single Line... .... .... .... .... ..... .... 5 1.6 Two-Phase Cell Cycle Model... .... .... .... .... ..... .... 7 1.7 Stochastic Billiard as a Cell Cycle Model . .... .... ..... .... 9 1.8 Stochastic Gene Expression I... .... .... .... .... ..... .... 11 1.9 Stochastic Gene Expression II .. .... .... .... .... ..... .... 13 1.10 Gene Regulatory Models with Bursting ... .... .... ..... .... 16 1.11 Neural Activity. .... ..... .... .... .... .... .... ..... .... 17 1.12 Processes with Extra Jumps on a Subspace .... .... ..... .... 19 1.13 Size-Structured Population Model.... .... .... .... ..... .... 21 1.14 Age-Structured Population Model.... .... .... .... ..... .... 24 1.15 Asexual Phenotype Population Model .... .... .... ..... .... 25 1.16 Phenotype Model with a Sexual Reproduction.. .... ..... .... 26 1.17 Coagulation-Fragmentation Process in a Phytoplankton Model.... .... .... ..... .... .... .... .... .... ..... .... 28 1.18 Paralog Families.... ..... .... .... .... .... .... ..... .... 29 1.19 Definition of PDMP. ..... .... .... .... .... .... ..... .... 30 2 Markov Processes ... .... ..... .... .... .... .... .... ..... .... 33 2.1 Transition Probabilities and Kernels.. .... .... .... ..... .... 33 2.1.1 Basic Concepts .... .... .... .... .... .... ..... .... 33 2.1.2 Transition Operators .... .... .... .... .... ..... .... 36 2.1.3 Substochastic and Stochastic Operators.. .... ..... .... 38 2.1.4 Integral Stochastic Operators.. .... .... .... ..... .... 39 2.1.5 Frobenius–Perron Operator ... .... .... .... ..... .... 41 2.1.6 Iterated Function Systems.... .... .... .... ..... .... 42 vii viii Contents 2.2 Discrete-Time Markov Processes .... .... .... .... ..... .... 44 2.2.1 Markov Processes and Transition Probabilities ..... .... 44 2.2.2 Random Mapping Representations . .... .... ..... .... 46 2.2.3 Canonical Processes .... .... .... .... .... ..... .... 47 2.3 Continuous-Time Markov Processes.. .... .... .... ..... .... 49 2.3.1 Basic Definitions... .... .... .... .... .... ..... .... 49 2.3.2 Processes with Stationary and Independent Increments... ..... .... .... .... .... .... ..... .... 51 2.3.3 Markov Jump-Type Processes. .... .... .... ..... .... 52 2.3.4 Generators and Martingales... .... .... .... ..... .... 54 2.3.5 Existence of PDMPs.... .... .... .... .... ..... .... 56 2.3.6 Transition Functions and Generators of PDMPs .... .... 59 3 Operator Semigroups .... ..... .... .... .... .... .... ..... .... 63 3.1 Generators and Semigroups .... .... .... .... .... ..... .... 63 3.1.1 Essentials of Banach Spaces and Operators... ..... .... 63 3.1.2 Definitions and Basic Properties ... .... .... ..... .... 65 3.1.3 The Resolvent..... .... .... .... .... .... ..... .... 67 3.2 Basic Examples of Semigroups.. .... .... .... .... ..... .... 69 3.2.1 Uniformly Continuous Semigroups. .... .... ..... .... 69 3.2.2 Multiplication Semigroups ... .... .... .... ..... .... 70 3.2.3 Translation Semigroups.. .... .... .... .... ..... .... 71 3.3 Generators of Contraction Semigroups.... .... .... ..... .... 73 3.3.1 The Hille–Yosida Theorem... .... .... .... ..... .... 73 3.3.2 The Lumer–Phillips Theorem . .... .... .... ..... .... 76 3.3.3 Perturbations of Semigroups.. .... .... .... ..... .... 78 3.3.4 Perturbing Boundary Conditions... .... .... ..... .... 80 4 Stochastic Semigroups.... ..... .... .... .... .... .... ..... .... 83 4.1 Aspects of Positivity. ..... .... .... .... .... .... ..... .... 83 4.1.1 Positive Operators.. .... .... .... .... .... ..... .... 83 4.1.2 Substochastic Semigroups.... .... .... .... ..... .... 84 4.1.3 Resolvent Positive Operators.. .... .... .... ..... .... 86 4.1.4 Generation Theorems ... .... .... .... .... ..... .... 87 4.1.5 Positive Perturbations ... .... .... .... .... ..... .... 88 4.1.6 Positive Unbounded Perturbations.. .... .... ..... .... 91 4.1.7 Adjoint and Transition Semigroups. .... .... ..... .... 94 4.2 Stochastic Semigroups for PDMPs... .... .... .... ..... .... 96 4.2.1 Jump-Type Markov Processes. .... .... .... ..... .... 96 4.2.2 Semigroups for Semiflows ... .... .... .... ..... .... 99 4.2.3 PDMPs Without Boundaries.. .... .... .... ..... .... 101 4.2.4 Dynamical Systems with Jumps ... .... .... ..... .... 103 4.2.5 Randomly Switched Dynamical Systems. .... ..... .... 104 Contents ix 4.2.6 Jumps from Boundaries.. .... .... .... .... ..... .... 106 4.2.7 Semigroups for the Stein Model ... .... .... ..... .... 109 5 Asymptotic Properties of Stochastic Semigroups—General Results .... .... .... .... ..... .... .... .... .... .... ..... .... 115 5.1 Asymptotic Stability and Sweeping .. .... .... .... ..... .... 115 5.1.1 Definitions of Asymptotic Stability and Sweeping .. .... 115 5.1.2 Lower Function Theorem .... .... .... .... ..... .... 116 5.1.3 Partially Integral Semigroups and Asymptotic Stability. .... ..... .... .... .... .... .... ..... .... 117 5.1.4 Sweeping via the Existence of r-finite Invariant Function .... ..... .... .... .... .... .... ..... .... 118 5.2 Asymptotic Decomposition of Stochastic Semigroups ..... .... 120 5.2.1 Theorem on Asymptotic Decomposition. .... ..... .... 120 5.2.2 Sweeping and the Foguel Alternative ... .... ..... .... 122 5.2.3 Asymptotic Stability .... .... .... .... .... ..... .... 124 5.2.4 Hasminskiĭ Function.... .... .... .... .... ..... .... 125 6 Asymptotic Properties of Stochastic Semigroups—Applications ........ 129 6.1 Continuous-Time Markov Chains.... .... .... .... ..... .... 129 6.1.1 Foguel Alternative.. .... .... .... .... .... ..... .... 129 6.1.2 Non-explosive Markov Chains and Asymptotic Stability. .... ..... .... .... .... .... .... ..... .... 130 6.1.3 Markov Chain with an Absorbing State . .... ..... .... 131 6.1.4 Asymptotics of Paralog Families... .... .... ..... .... 132 6.1.5 Applications to Pure Jump-Type Markov Processes . .... 133 6.2 Dynamical Systems with Random Switching ... .... ..... .... 135 6.2.1 General Formulation.... .... .... .... .... ..... .... 135 6.2.2 Applications to Stochastic Gene Expression Models. .... 137 6.3 Cell Maturation Models ... .... .... .... .... .... ..... .... 140 6.3.1 Introductory Remarks ... .... .... .... .... ..... .... 140 6.3.2 Flows with Jumps.. .... .... .... .... .... ..... .... 141 6.3.3 Size-Structured Model... .... .... .... .... ..... .... 142 6.3.4 Two-Phase Cell Cycle Model. .... .... .... ..... .... 144 6.3.5 Lebowitz–Rubinow’s Model.. .... .... .... ..... .... 146 6.3.6 Stein’s Model ..... .... .... .... .... .... ..... .... 147 Appendix A: Measure and Probability Essentials.. .... .... ..... .... 149 References.... .... .... .... ..... .... .... .... .... .... ..... .... 159 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 165

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.