ebook img

Physiology and Diversity of Ammonia-Oxidizing Archaea PDF

21 Pages·2012·0.41 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physiology and Diversity of Ammonia-Oxidizing Archaea

MI66CH05-Stahl ARI 14August2012 13:53 Physiology and Diversity of Ammonia-Oxidizing Archaea David A. Stahl1 and Jose´ R. de la Torre2 g or 1DepartmentofCivilandEnvironmentalEngineeringandDepartmentofMicrobiology, ws. UniversityofWashington,Seattle,Washington98195-2700;email:[email protected] alreviee only. e2Dmeapila:[email protected],SanFranciscoStateUniversity,SanFrancisco,California94132-1722; us nu anal w.on ws wer d from 2. For p e1 83-101. Downloadniversity on 09/24/ 6:U 012.6State Annu.Rev.Microbiol.2012.66:83–101 Keywords Microbiol. 2n Francisco mTThhiciersoAa.rantnnicnuluaela’slRrdeevoviiie:ewwso.foMrgicrobiologyisonlineat TAhbasutmraacrcthaeota,ammoniaoxidation,nitrification,nitrogencycle u. Rev. by Sa 1C0o.p11yr4i6g/hatn(cid:2)ncur2e0v1-2mbicyroA-n0n9u2a6l1R1-e1v5ie0w1s2.8 Tnihzeeddtiosceoxveerrtyporifmaamrymcoonnitar-oolxoidviezrinamgmarochnaiaeaox(AidOatAio)n,ninowtergreensterriaalll,ymraercionge-, Ann Allrightsreserved andgeothermalhabitats,necessitatesareassessmentofthenitrogencycle. 0066-4227/12/1013-0083$20.00 Inparticular,theunusuallyhighaffinityofmarineandterrestrialAOAfor ammonia indicates that this group may determine the oxidation state of nitrogen available to associated micro- and macrobiota, altering our cur- rentunderstandingoftrophicinteractions.Initialcomparativegenomicsand physiologicalstudieshaverevealedanovel,andasyetunresolved,primarily copper-basedpathwayforammoniaoxidationandrespirationdistinctfrom thatofknownammonia-oxidizingbacteriaandpossiblyrelevanttothepro- ductionofatmosphericallyactivenitrogenoxides.Comparativestudiesalso providecompellingevidencethatthelineageofArchaeawithwhichtheAOA affiliateissufficientlydivergenttojustifythecreationofanovelphylum,the Thaumarchaeota. 83 MI66CH05-Stahl ARI 14August2012 13:53 Contents INTRODUCTION............................................................... 84 ABRIEFHISTORYOFDISCOVERY............................................ 85 PHYLOGENETICDIVERSITY.................................................. 86 THAUMARCHAEOTA:ANEWDIVISIONWITHINTHEARCHAEA........... 87 HABITATRANGE............................................................... 87 PHYSIOLOGICALPROPERTIES............................................... 88 KineticsandStoichiometryofAmmoniaOxidation............................... 88 EvidenceforAutotrophic,Mixotrophic,andHeterotrophicGrowth............... 90 COMPARATIVEGENOMICSPOINTSTOUNUSUAL BIOCHEMISTRYANDCELLBIOLOGY..................................... 90 TheBiochemistryofArchaealAmmoniaOxidation............................... 91 g or CellCycleandtheMachineryofCellDivision................................... 93 s. w POTENTIALEFFECTSONATMOSPHERICCHEMISTRY................... 95 alreviee only. FUTURERESEARCH........................................................... 96 us nu anal w.on ws wer d from 2. For p IONurTuRndOerDstUanCdiTngIOofNthemicrobiologicalunderpinningsoftheglobalnitrogencyclewassignif- e1 83-101. Downloadniversity on 09/24/ ioatpcomrragondmactinenloysiinsstmariialont-gemomerxeneaidddngiiyizaanitnsninabgvtgoiuaatrahratnchl1haes9eayre9asoo9tnebnamaimcn(sAdmasOmu2ocA0xmh0)ro5aewn.saaicTtashtihoepoexunBibydliaelasicastknrihooeS1nwde9a(9(7r39ae26nc)m)do,.agacArnneknrideztaadeeiindrntoht2mboe0iac0fibr5redinsettaechfooemomxrfiaympjrgosoaertsln,iddt-iifemeossnncicnorroiitipmpfdttuiaiooommmnnmizoonooffannnaaeitnnas, 6:U (38,39).Themorerecentrevisioninourunderstandingofthenitrogencyclefollowedtheiso- 012.6State lationofthefirstAOA,Nitrosopumilusmaritimus[nitrosus(Latin):nitrous;pumilus(Latin):dwarf; Rev. Microbiol. 2by San Francisco mobbfyaacprmHtlieatoorinmilwokeuctpeosuvlanle(anLirrc,kattmttoyhinpnae)ri:n(bin3ogio4efo)gta,fherhoc1eahc6sdhaSeeearrame]R,mfiiaNcraassiAtmlniseagdidgleelnnnmmietfiyisafics.rteaiendnreciioenouortshgfuaemnn1iat9sirml9ind0ecasltboaayrsfcerFhloyuamerrhaem,lmacataoernmidnetpetormaiasl.nein(t2aaggb12e)u0nan–nod4mda0nDe%tsepeLooqfopunumelgnaactr(i1iionn7nge) u. AOA: ammonia- reportedanarchaealopen-readingframecodingforaproteindistantlyrelatedtomonooxygenases n n oxidizingarchaea A ofammonia-oxidizingbacteria(AOB)andmethanotrophs(77).Inthesebacteriathemonooxyge- Monooxygenase: naseactivateseitherammoniaormethaneforfurthermetabolictransformationbyinsertingone anenzymethat atomfrommolecularoxygenintothesubstrate,yieldinghydroxylamineormethanol.Ahomolo- incorporatesoneatom gousgenewassubsequentlydescribedinanarchaealfosmidclonederivedfromasoilmetagenome ofmolecularoxygen intoitssubstrateasa study (75). And, more recently, a related but functionally distinct monooxygenase, functioning hydroxylgroup inthehydroxylationofbutane,wasdescribedforabacterialbutaneoxidizer(64).Thepresump- AOB: ammonia- tiveannotationofthearchaealhomologsservedforspeculationthatsomemarinearchaeamay oxidizingbacteria functionasammoniaoxidizers(77). MMO: methane Interestingly,thealternativepossibilitythatthesedivergentmonooxygenasesfrommarineand monooxygenase soilarchaeaservedanalternativecatabolicfunctionwassurprisinglynotformallyconsidered.The AMO: ammonia bacterialparticulatemethanemonooxygenase(pMMO)andbacterialammoniamonooxygenase monooxygenase (AMO)shareanaminoacidsimilarityofapproximately74%(64).Incontrast,theputativearchaeal AMOwasonlydistantlyrelatedtothebacterialpMMOandAMO.Thus,afunctionalassignment · 84 Stahl delaTorre MI66CH05-Stahl ARI 14August2012 13:53 toammoniaoxidationwasbasedononly∼40%aminoacidsimilarity.Forperspective,theBmoA subunitoftherecentlydescribedputativebutanemonooxygenasefromagram-positivebacterium (Nocardioidessp.strainCF8)ismorecloselyrelatedtoproteobacterialPmoAandAmoAsequences AmoA,AmoB, (37–38%averageaminoacididentity)thantotheputativearchaealAmoAsequence(20%average AmoC: threeprotein aminoacididentity)(64).However,giventheimportanceofammoniaoxidationincontributing subunitscomposing tobothpositiveandnegativeenvironmentalimpacts,andthepossibilitythatamajorplayerinthe theammonia nitrogencyclehadbeenoverlookedsincethepioneeringworkofSergeiWinogradskyinthelate monooxygenase nineteenthcentury(81),themetagenomeannotationdidengendersomeattention.Nonetheless, it was only the isolation of a representative microorganism that conclusively demonstrated the physiologicalcapacityofammoniaoxidationandthatfullycaughttheattentionofoceanographers, limnologists,andsoilscientists(36).Numerousstudiesandreviewspublishedinthepastfiveyears nowprovidepersuasivedatainsupportofthegeneraldominanceofarchaeaincontrollingthe fateofammoniainbothsoilandaquaticsystems(42,57,76,84). g or s. w alreviee only. ABRIEFHISTORYOFDISCOVERY us nu The paths to discovery are rarely direct, and the backstories generally not published nor at- anal w.on tributabletoanindividualeffort.ThediscoveryofAOAisnoexception,andwerelateeventsthat ws wer ledtotheisolationofN.maritimus.Ourinitialindicationofanovelgroupofammoniaoxidizers d from 2. For p creaamcetofrrosymsteomurssutsueddietositnretahtewlaatteer1i9n9t0hsealasrpgaerstaoltfwaacteernasuqsuaorfiabaactttehreiaSlhdeidvedrAsiqtyuainriuthme(nCithriicfyaignog, e1 83-101. Downloadniversity on 09/24/ Ia&rleqlsiuDnuAalo.rtAifissea.)ww.SfaePtyiraCleeheaRdlp,rustuaotmnlaapytpsiueiledriblfi,edlicsstisahometeiqboidulenaeorrnobeofcsvbeebissrsaeivcctratelvteodiarso.tieanilolysn1).rs6eBSwlearectReraeduNsmteAoaPgkdCenenoRiewnsanmafrbsoptamlucifidtDecyraNiotaifloAtnahrmehecmamosoviintecsrriaeoadsbosifxooriclodoimiagzteyetrdhosebf(isnJaa.isLltetrw.so,Fagttlheaenexr 6:U processinginPlumIslandSound(Massachusetts)estuarysediments(36).Again,generalandspe- 012.6State cificprimersforbacterialammoniaoxidizersfailedtoamplifytheexpectedsequencetypesfrom Rev. Microbiol. 2by San Francisco ngrcthRhriteaaNrpeinfhoAiyttiicrangi,fgeIrynneeisnelntagirtsteieuficdqthlitusmoreeanqnet.inucoHeetnssnodcsfwyreeossvetmevwelemoerapr,seecbadflytaoitdunehenxecpdooSaftlhnloamedbbdianoedrrgiaaAnbtteqiuhouneanardrPcwaihCuniatmtRehian-(ibn3ttah6vhse)eee.sndteTiskgshtnacuotroasoerwereysnnrseaeasttdoustilhmmteesneasWcnrtoiitnmmoeeounpdGlraaissctrsHehodamuorpalceehfn1oOatlseclcoaraeelwnan1dn-a6uoirnSp-- u. studyofnitrifyingfiltrationsystemsattheSeattleAquarium,whichalsorevealedhighrepresenta- n n A tionofthesamesequencetype(36).Thus,anarchaealpopulationcloselyrelatedtotheabundant Group1crenarchaeotawasclearlyimplicatedinammoniaoxidation.Subsequentdevelopmentof enrichmentculturesusingthesaltwateraquariamaterialasinoculant,andamediumcontaininga muchlowerconcentrationofammoniathantypicallyusedtoenrichbacterialammoniaoxidizers, yieldedanactiveammonia-oxidizingculturehighlyenrichedinanarchaealpopulationaffiliated with the Group 1 crenarchaeota. Following another year or so of painstaking end-point dilu- tions,combinedwithselectionbysizeandantibioticresistance,thefirstpurecultureofanAOA, N.maritimusstrainSCM1,wasdescribed(36). Inaresearchenvironmentwheremetagenomicsandextensiveenvironmentalgenesequence surveysareincreasinglycommon,thisstoryoffersacounterpoint.Anorganismrelevanttoamajor environmentalprocesswastrackeddownusingculture-independentmethodstofirstassociatethe process(ammoniaoxidation)withaphylotype(Group1crenarchaeota)asapreludetoinvesting thesignificanteffortnecessaryforisolationinculture.SincetheisolationofN.maritimusin2005, www.annualreviews.org • PhysiologyandDiversityofAmmonia-OxidizingArchaea 85 MI66CH05-Stahl ARI 14August2012 13:53 a 53 concatenated ribosomal proteins b 16S rRNA c amoA Nitrosoarchaeum koreensis Marine group 1.1a Nitrosoarchaeum limnia SAGMCG−1 Marine group 1.1a Nitrosopumilus maritimus Soil group 1.1b Cenarchaeum symbiosum Nitrosotalea cluster HWCG−III Nitrososphaera gargensis Nitrosocaldus yellowstonii pSL12 Soil group 1.1b Caldiarchaeum subterraneum MCG Nitrosocaldus cluster Korarchaeum cryptofilum OPF8 Marine benthic group B 0.10 Crenarchaeota Crenarchaeota HWCG−I Nanoarchaeum equitans Euryarchaeota Euryarchaeota Nanoarchaeota g Korarchaeota or 0.10 ws. 0.10 alreviee only. Figure1 nuus Phylogenyofammonia-oxidizingarchaea.(a)Maximum-likelihoodanalysisof53concatenatedconservedribosomalproteins anal constructedusing6,138aminoacidpositions.Eukaryoticsequenceswereusedasanoutgroup.ThetreewasconstructedusingPhyML ww.son withanLGmodelwithgammacorrection(foursitecategoriesandusingestimatedproportionofinvariablesites).(b)Maximum- d from w2. For per lgoiaukmetglmirhoaouocpdo.r(trcr)eecMetiooafxniam(rfcouhumare-asliilkt1ee6lciShatoreiogbdoorstiroeemseaaonlfdraRurNcshinAagesaeelqsatuimmenoaActeegsd,epcnarelocspueoqlarutteeiondncueossif,nicgnavl5ca9ur4ilaapbteoledsisutiistoeinns)gs.a1En,u2dk6aa5rHpyooatssiiectgisoaenwqsau-aeKnndicsehasiHnwoae-srYeegauanswoeadm-Kaosidsaehnlinwoit-h e1 83-101. Downloadniversity on 09/24/ gMYsweoaiqCtlnhduoGeamnm,bcimnoleoedsicsewccklreedewlrlnoaeitatnhu.recBsogheluaduamseeaocmsbrtaiaeaccnnckgaoogrrurrcorohtueguapcrento1oiduo;tpnibHc.o(gWIxfnoreousCaurilGnlpsdt.i-rtiIeec,eachstae,otnteligownodeareatisegeressuscaprbnepednoloaurrntsceignhdiganbegeyosttbtoiicomtoghatretsoetTurdaphppaIruv;omaHplauoWrerctshiCoganGeroeto-aaItf.IeiIArn,bvthhaborartineawvb8iala0ett%eisoritnc(e1srs:e0)Sn.0BAarraGeccphMtlaeicerCiaoatGtleicsa-)m1ga,rorSoAeouiaupnntdIhdIicIAp;amftreoidcAan 6:U thesamegeneralapproachtoenrichmentandisolationhasbeenusedsuccessfullytoculturenew 012.6State AOAfromsoilsandgeothermalenvironments(5,16,24,30,41,74). Rev. Microbiol. 2by San Francisco PTseHhqrueYeenLcmOeasjGoasrEalNinperEoaTgxyeIsfCoorfDrmeIasVorilnvEienRagSrcgIheTaneYeatiwcaelrlyedidisetninticfitepdoipnutlahteiolnatse(p1h99yl0ost,yupseins)g(1176,S2r1R,N48A).gOennee u. lineage(Group1)wasproposedtobeaffiliatedwiththekingdomCrenarchaeotaandtheremain- n n A ingtwogroupsaffiliatedwiththekingdomEuryarchaeota.Subsequentextensive16SrRNAgene surveysofbothsoilandaquaticsystemsrevealedthatGroup1archaeawerewidelydistributedin moderatehabitats.Theywereabundantthroughoutthemarinewatercolumn(34),representing thedominantdeepmarinemicrobialpopulation,andcommoninestuaries(3,4,14),sediments (26,44,65,79),andsoils(31).Asadditionalsequenceswerecompiled,additionaldivisionsrelated totheGroup1crenarchaeotaweredefined(Figure1).Themajorityofsoilandmarinesequences couldbeassignedtotwoclades,definedasGroup1.1a(marine)andGroup1.1b(soil).Because noorganismwasavailableinculture,insightsintothebiogeochemicalsignificanceoftheseglob- allydistributedandabundantmicroorganismswereinitiallyinferredfrominsitumeasurements ofnaturalisotopiccompositionofdiagnosticetherlipids(27,55)andfromincorporationofra- diolabeledorganicandinorganicsubstrates(25,53,82).Theseanalysessuggestedasignificant inorganiccarbonsourceofcellularcarbonbythedeep-watermarineGroup1populationbutalso establishedacapacitytoassimilateorganicmaterial.Thephysiologicalbasisfortheseassimilation · 86 Stahl delaTorre MI66CH05-Stahl ARI 14August2012 13:53 propertiesremainedunknownuntiltheisolationoftheAOAandtheanalysisoftheirgenomes (23,80). Thaumarchaeota: arecentlydefined THAUMARCHAEOTA:ANEWDIVISIONWITHINTHEARCHAEA division(phylum) withintheArchaea SincethedescriptionofN.maritimus,thephylogeneticdiversityofAOAhasbeenunderconstant encompassingall revision as new organisms are described. The current census reveals an assemblage that spans knownammonia- tremendous depth within the Archaea, affiliated with marine and soil groups initially assigned oxidizingarchaea, to the Crenarchaeota on the basis of comparative 16S rRNA sequence comparisons (Figure 1), includingorganisms previouslyclassifiedas andmoredivergentcladesderivedfromgeothermalenvironments.Phylogeneticinferencebased Group1crenarchaeota on larger sets of phylogenetically informative genes (including concatenated ribosomal protein Crenarchaeol: sequencealignments)nowmadeavailablebycompletegenomesequenceshasprovidedsupportfor aglyceroldialkyl thecreationofanewdivisionwithintheArchaea,theThaumarchaeota,withwhichallcharacterized g glyceroltetraether or AOAaffiliate(7,71). containingfour s. w The current understanding of phylogenetic and physiological diversity within the cyclopentanemoieties ualreviese only. Tdihvaeursmitayr.chTaheoetafewGrcouultpur1esmoafrAinOeAancadnsboeiluasrecdhtaoeaphisysbioasloedgicparlilmyaarniclyhoornso1m6SeorfRtNheAclsaedqeuseinncie- pcylucsloahnexaadndeitimonoiaelty, nu associatedspecifically ww.ansonal tmiaelmlybinefresrorfedthfirsonmewenkviinrogdnommenhtaavlleybdeeernivebdro1u6gShrtRinNtoAcsuelqtuuerencoews.inHgotwoeavnera,bbileictyautosegarloldwevsciariabmed- withThaumarchaeota wer d from 2. For p mchoanraiactoexriidstaitcioonf,thwiesnareewlleyftdwefiitnhedthdeivuinsiuosnu,aalsimispmreestshioannotgheanteasmismaodneifianoixnigdacthioarnacistetrhiestdicefiofnitnhge e1 Euryarchaeota. The possibility that a deeply diverging group within the Archaea split from the 6:83-101. DownloadUniversity on 09/24/ bemaamglyeaecaimnotnrofalointennhrieaoeabfccwociocolenluppotltehwdomyirrnspaiwgooisoldreouaegrflvudyye,nnlsoadeinptaerdmmmoegeetaennornttlaryocleyfdqqcetuulhveieeer.selDtcoiaapoepnmneapsecealicnytroytldynoticvonfeeorgrrenngrsopiipnnwhiggroabtcbtoylooatretdryhxoetpsstryhhawsceitictetoihmsnroiginsugeutrinhncseiseenroAoggffryoctOhxhayan2eged(Aae1enar1lcre)ahe.csadtearoaotmenarnsimndfariottnhemadel 012.6State Rev. Microbiol. 2by San Francisco HTdthehaApteeBoonftIdhcTeuenrAlttruTteermecRdhanrbAkiaqaNcubteelGersipEiasilctathmuermeexeotmnriaeaororgdxiniidngiazfrreyorsmr.aAnthgbeeuncoodfaahlneacsbecietaanntcdseodocifvcceuurpslitietuydrepb-ayitnttdehreenpsAehnOadAveen,tbfaaerneendxiccnuefleetdrurirneedg- u. primarilyfromsequencingandquantificationofthegenecodingfortheputativearchaealamoA n n A (2,20),ameasuregenerallywellcorrelatedwiththeabundanceofauniqueglyceroldialkylglycerol tetraether,crenarchaeol,firstassociatedwithmarineGroup1archaeaandnowrecognizedtobe madebybothmesophilicandthermophilicAOA(15,16,42,54).AOAappeartobethedominant archaeal clade in soils (generally comprising 1–5% of all prokaryotes) (40, 51), are a dominant marinegroup(comprising20–40%ofallmarinebacterioplankton)(12,34),andappeartobea majorammonia-oxidizingpopulationingeothermalhabitats(16,19,60,83).Thus,theirhabitat rangefarexceedsthatoftheirknownbacterialcounterparts. Those AOA now available in culture grow at temperatures as high as 74◦C (Nitrosocaldus yellowstonii) (16) and at pH values as low as 4 (Nitrosotalea devanaterra) (41). The existence of thermophilic representatives of AOA was initially indicated by the recovery of the diagnostic glyceroldialkylglyceroltetraetherlipid(crenarchaeol)previouslyassociatedonlywiththemarine Group1.1aandbytheamplificationofthearchaealhomologofamoAfromhotsprings(54).The moderatethermophileNitrososphaeragargensis[nitrosus(Latin):nitrous;sphaera(Latin):spherical; www.annualreviews.org • PhysiologyandDiversityofAmmonia-OxidizingArchaea 87 MI66CH05-Stahl ARI 14August2012 13:53 gargensis(Latin):fromGargaspring],enrichedfromaSiberianhotspring,hasanoptimumgrowth temperatureofabout46◦C(24). Continuedsurveysofgeothermalhabitatsbasedonbothnitrificationratemeasurementsand Half-saturation selectiveamplificationofthearchaealamoAandgenetranscriptssuggesttheirdistributionincludes tchoencsotanncten(KtrmatioornKosf)a: hot springs with temperatures as high as 97◦C and pH values as low as 2.5, but with greater limitingnutrient diversity and abundance trending to springs with temperatures below 75◦C (29, 60, 85). This supportingone-half broadhabitatrangeisalsoreflectedbythetremendousphylogeneticdiversityofmajorarchaeal themaximumgrowth lineages defined by 16S rRNA sequence types recognized to have ammonia-oxidizing affiliates rateofanorganism andthecorrespondingdiversityofputativearchaealamoAsequences(Figure1). PHYSIOLOGICALPROPERTIES KineticsandStoichiometryofAmmoniaOxidation g or InitialphysiologicalstudiesofN.maritimusstrainSCM1,theonlyavailablemarineisolate,have s. w alreviee only. pstrooivcihdieodmiemtrpyourtsainngtimnsicigrohrtessipnitroomtheetrbyastiosmfoeratshuereeocoxyloggeincaalnsducacmemssoonfiAaOcoAn.suSmtupdtiieosnorferlaetaicvteiotno us nitriteproductionshowedthattheoverallstoichiometryofammoniaoxidationbyN.maritimus nu anal isindistinguishablefromthatofAOB(46): w.on wwers 1NH +1.5O ⇒1NO−+H O+H+. d from 2. For p Studiesofammoniaoxidationkin3eticssubse2quentlyde2monst2ratedthatthismarineisolateisanex- e1 83-101. Downloadniversity on 09/24/ atmtporcleuitntmishvgiaeetmpyoaodlmciodogloiuo.tnltiFdroiaounb)pretoohhffe,elho1ircna3miv2etoientnrdegeMab,asyNpn(o∼ta.hopm3enpanaaordrMifedtcniimtNotinouhHcnsael3cfone-aftsltrla2satn0tude0eriadadnrta-MinnomoenamtumcttooormnanlelisourtpnaamHntiuet)hm(ay(Km4dtm6orm))o.rfxoeoMinsdrtioetianortaegtoattclacheanoalmlnnOsmc.5elTyo0nmhn%triipsaaitoi(cisafomsemniqzsmauesxioisvignwmaniliuueimfinmm--t 6:U cantlyabove1mM.SimilarobservationshavebeenmadewiththemoderatelythermophilicAOA 012.6State N.gargensis(24).Incontrast,characterizedAOBhaveKmvaluesthataremorethan200-foldhigher Microbiol. 2n Francisco tt6hi9va,i0nty0t0ohfeliNtKe.mrmgvaa[rlwuiteeimtouwfseNcigo.hnmtt]ar−irb1ituihmt−eu1t.soT(4ah6si)ps.eTicsihfiaemceoaxfntfirgneimtthyeelfyohrilgoahwmesmatpospunabiraestn(rVtamtKeamxa·Kfafinmnd−it1hy)igorehfpamoprpatxreoidmxifumomrataaenclyy- Rev. by Sa mheitcerroootrrgoapnhissman,dnomtaorninlyefpohryotorgpalannicktsounbsftorratceesllbuulatraglsroowfotrha(s1s0im,4il6a)t.ioAnsoexftarmemmeoonliiagobpyhbialecst,erthiael u. marinepopulationsareplausiblyresponsibleformaintainingoceanicconcentrationsofammonia n n A inthelownanomolarrange,effectivelyoutcompetingthebacterialammoniaoxidizersinaccess- ing ammonia (46). In contrast to the very low ammonium concentrations required for growth, N.maritimushasanaffinityforoxygenthatismoretypicalofaerobicmicroorganisms(∼4μM) andisunabletogrowanaerobicallyundercultureconditionssofarevaluated(D.A.Stahl&J.R. delaTorre,unpublishedobservations).BecauseAOAhavebeenimplicatedinprovidingtheni- triteusedbyanaerobicammoniaoxidizersinoxygen-minimumzones,suchorganismsmayhave significantlyhigheroxygenaffinitiesthanN.maritimus. The soil AOA have been only more recently brought into culture and there is less direct physiologicaldataavailable.Nitrososphaeraviennensis[nitrosus(Latin):nitrous(nitriteproducer); sphaera(Latin):sphericallyshaped;viennensis(Latin):fromVienna],isolatedfromgardensoilin Vienna, Austria, tolerates higher concentrations of ammonia than does N. maritimus, demon- stratingcompleteconversionofammoniaatinitialammoniaconcentrationsashighas3mM(74). Growthcanbeinitiatedathigherconcentrations(greaterthan10mMammonia)butstoppedwhen · 88 Stahl delaTorre MI66CH05-Stahl ARI 14August2012 13:53 nitriteoriginatingfromammoniaoxidationexceeds∼3mM(74).Nitritealoneisnotassociated withgrowthinhibition,as growthcanbe initiatedinfreshculturemediumsupplementedwith 10-mM nitrite. Thus, an unknown metabolite or intermediate was invoked as inhibitory (74). Theseculture-basedobservationsaregenerallyconsistentwithinsitustudiesshowingthatAOA populationsgrowoverawiderangeofammoniaconcentrationsincontrasttoAOBthatrequire significantlyhigherammoniaconcentrationstoinitiategrowth(57,78,84).Amorerecentlyde- scribedAOAenrichedfromlowpHsoils,Nitrosotaleadevanaterra[nitrosus(Latin):nitrous(nitrite producer);talea(Latin):slenderrod;devana(Latin):Aberdeen;terra(Latin):soil],hasanoptimum pHbetween4and5(41).Thismarkedthefirstdescriptionofanacidophilicammoniaoxidizer and provided a clear microbiological explanation for significant nitrification rates measured in acidicsoils,eventhoughnosuchcapacitywasknownforAOB(6).TheabilityofN.devanaterra to grow at extremely low pH values is also suggestive that ammonium, rather than un-ionized ammonia, is the substrate for growth. One explanation for the failure of AOB to grow at pH g valuessignificantlybelowpH7istheirrequirementfortheun-ionizedformasgrowthsubstrate or s. (1, 8). Because the concentration of the un-ionized ammonia form decreases 10-fold for every w alreviee only. 1ex-aumniptlree,dinucatisoynstienmpcHo,ntthaienAinOgBatwootaullcdobnecceonmtreatrioapnidolfyasmumbsotrnaitae/almimmitoedniausmpoHf1is0l0omwegretodt.aFloNr nuus liter−1(28◦C),thereis7mgNH -Nliter−1atpH8andonly0.0007mgNH -Nliter−1atpH4.A anal 3 3 w.on preference,orrequirement,forammoniummayalsobetrueofthemarinepopulations,becauseat ws wer ahalf-saturationvalueof100nMforN.maritimus,theconcentrationofun-ionizedammonianear d from 2. For p pcoHlle7citsioonnolyfaapmpmrooxnimiaaftoerlyox1i–d3atnioMn.(Wcateabthoelirsemfo)reenstuirsepleycdtitfhfeartetnhtefrAoOmAthuasteuasemdefcohraansissimmifloartitohne. e1 83-101. Downloadniversity on 09/24/ aIsufymlannrmItonhptoerssnsoooiisxi,al.iaseaT,hslsshitsogueuhsdac-ephiaepdfsafieaslnatianraistmkpyitoonocAiagnpttangrbtoeiotonvrliieaidficneacpnaosatdvoiteoihtllnrwAparanhOaysytcAwesrisooiwptluootiltgdahtyhbiameuanncnpdodiotamvrsniuepficrpeeeipstsrhi)otairhabvtnaeiunvnaaegnddasbavubniaogonccgeltihaecaegsnptmeedadoitsahvttcwrehtyriaa.vytAithuOyisgB(euhd.sIfianonffigrgncmeeintloyleulreflaocal-rr, 6:U AOBtendtodominateinsystemsreceivinghighdirectadditionsofinorganicammonia(28,57), 012.6State whereassystemssustainedbymineralization(ammonification)oforganicmaterialselectforAOA Rev. Microbiol. 2by San Francisco (ooimm1rxa8gipdr,alia5ninct2ieiaso)tm.eniTons,nvhgpisureroesnf,onseuwrmrmaittelhlhanyebtrlsceyg.oplNfnoruesbinistaderclenitfiirntoecaindattritvoaitoeosgsneabtnshkeeaecrttyyvhfecevulsaenrlacavatteknieoei-dnynlimfnafousiirtntericxitnfitrtgirocoepasnmtthieioiepncnoitilbnnhigyteneocrnittoariroctnirtfiptoirochgoanselt,lsniitonhincngey.stcbeThloecehthbhiresaymtthepeaorrosarofeusvsitaigtodmrntiirnamifiolgopcatanhnhniideact u. oxidizedspeciesofnitrogen(nitriteandnitrate)thatareessentialsubstratesforbothdenitrification n n A andanaerobicammoniaoxidation,activitiesthatservetoreturnfixednitrogentotherelatively inert atmospheric form of molecular nitrogen. The recognition of archaeal groups adapted to extremelylowammoniaconcentrations,acidicpH,andhightemperaturesnowpointstoafully functionalnitrogencycleinamuchgreaterrangeofhabitatsthanpreviouslyrecognized.Inturn, ifAOAeffectivelycompetewithphytoplankton,heterotrophs,andotherautotrophsintheocean, or with plants and other microorganisms in soils, this may mean that assimilation of ammonia isaminorpathwayforthemetabolismofammoniareleasedthroughmineralizationoforganic material.Thus,theAOAmaybeammoniathievesandconceivablyforceothergroupstoinvest reducingpowerinthereductionofnitrate/nitritetoammoniaforbiosynthesis.Resolutionofthe majoroperativepathway,assimilationversusoxidationofammoniareleasedthroughmineraliza- tion,isthenofgreatsignificancetodevelopingabetterunderstandingofmicrobialcontrolsof nitrogenformandavailabilitytoassociatedmicro-andmacrobiotainbothmarineandterrestrial systems. www.annualreviews.org • PhysiologyandDiversityofAmmonia-OxidizingArchaea 89 MI66CH05-Stahl ARI 14August2012 13:53 EvidenceforAutotrophic,Mixotrophic,andHeterotrophicGrowth AvailabledatasuggestthattheAOAaregenerallycapableoffixingCO .Inadditiontotheclear 2 demonstrationofautotrophicgrowthbyN.maritimus,CO fixationwaspreviouslyinferredfrom 2 environmentalstudiesoftheisotopiccompositionofsignaturelipidsandmicroautoradiographic imagingofnaturalsamplesincubatedwithlabeledorganicorinorganiccarbon(37,53,55).These dataalsosuggestedsomeabilityfortheincorporationoforganiccarbon(27).Thelatteriscon- sistentwithgenomesequenceannotationofN.maritimus,pointingtothepresenceofanumber oftransportersfororganicmolecules.Recentstudiesinourlaboratorieshavedemonstratedsome stimulation of N. maritimus growth by the addition of central metabolism intermediates (e.g., pyruvateandα-ketoglutarate)(47).Alargersetoftestsubstrates(includingaminoacidsandfatty acids) did not stimulate growth. N. viennensis is also capable of chemolithoautotrophic growth. Althoughgrowthwasobligatelycoupledtoammoniaoxidation,itcouldbesignificantlyenhanced byincludingpyruvateinthegrowthmedium(74). g or InadditiontoacapacityformixotrophicgrowthbythemarineAOA,arecentpublicationfrom s. w theWagnerandHeadlaboratories(50)suggeststhatsomeThaumarchaeota,althoughexpressingan alreviee only. oamxiodAizgeeanmemcloonseialy.TrehlaistesdtutdoytheaxtamofitnheedGarpoouppu1la.1tibonsooilfcplraedseu,mlapcktivtheeAcOapAacinityatpoeetritohleeurmfixrCefiOn2eoryr us nu anal wastewatertreatmentsystem.Initiallyidentifiedbycombined16SrRNAgeneandamoAsequence ww.son characterization,stimulationoftheammoniaoxidizersinthisreactorbyammoniaadditionfailed wer ed from 12. For p tisnoycsstoetrimmpocurolaautteledliaancbcceool.rupMnotrofaodtreiolainlnlgaomfstrmuaddoiineoislaasobuxegildgeaedtsitCoendO.t2Thbhaytustth,haeeltAhAOoOuBAgh,eneavcuetminveetrhtarotaeundgschinricptohtrieoesnsiadomefntehtteAraeOractBhmadeeniadtl 83-101. Downloadniversity on 09/24/ ascpoulmofogphosgueAyelldysawrttreoaieodsxlnycatlothaefnausdtefin,strcaomotsibfoehadpnac,esstttebhrirneoeiealretnlehuAwremeMacb-sedOinnoeodtgalerenyagvdrdiredpaipnedMognarctMbtieoeaOodncftfe(aoo6rfcri4aoao).n,nrTttghorahirebngeuAisactenMiomidsOnamattt-aoelhirfkaaiumaerrblmt,moharoeoirnnnwogieeaomlaolx-pbyxchiguhdaetaaasnrtinaaizoesceentmet.ohrTofieznthehdoediiossfefixfayucarguuncelhtcthntayioaeoisrannesl 6:U 012.6State aasnsdigfnuinncgtifounnacltliyonwesolll-eclhyaornacttheeribzeadsiseonfzyhmome.oMloogrye,egveennerwahlleyn,tthhiesgreaniseescothdeesqfuoersatioclnosoeflywrheelathteedr Microbiol. 2n Francisco tshheoualbdubnedadnirceectolyf aasmsooAciagteednewsiothrngietnriefictraatinosnc.ripts in marine or terrestrial systems can or even Rev. by Sa u. COMPARATIVEGENOMICSPOINTSTOUNUSUAL n n BIOCHEMISTRYANDCELLBIOLOGY A The completion of the genome sequence (1.64 Mbp circular chromosome) of the first isolated AOA,N.maritimus,revealedthreemajordeviationsfromthecanonicalbacterialsystemofammo- niaoxidationandcarbonfixation:(a)aroleforcopper(ratherthaniron)asthemajorredoxactive metalinelectrontransferreactions,(b)theabsenceofanyhomologtothebacterialoxidoreductase (hydroxylamineoxidoreductase,HAO)responsiblefortheoxidationofhydroxylaminetonitrite, and(c)avariantofthe3-hydroxypropionate/4-hydroxybutyratecycleforCO fixation(asopposed 2 tofixationbytheribulosebisphosphatecarboxylase/oxygenaseoftheCalvin-Bassham-Bensoncy- cleemployedbycharacterizedbacterialammoniaoxidizers)(80).Thus,thecurrentpictureofcar- bonmetabolismsuggeststhattheserepresentativesofthemarineandsoilAOAderiveenergyand electronsprimarilyfromtheoxidationofammoniabutcansupplementcarbonfromCO fixation 2 usingalimitedsetofsimplecompoundsthatfeeddirectlyintocentralmetabolism.Thecombined · 90 Stahl delaTorre MI66CH05-Stahl ARI 14August2012 13:53 propertiesofhavingselectiveorganicmaterialuptake,CO fixationbythe3-hydroxypropionate/ 2 4-hydroxybutyratepathway,andthepresenceofabranched(incomplete)tricarboxylicacid(TCA) cyclenowpointtoarelativelysimplemetabolicarchitectureofcarbonassimilationandanabolism. Phosphonate: Otherdistinctlynovelfeaturesindicatedbythegenomesequencesincludedanunusualsystemof organiccompound celldivisionandthecapacitytosynthesizenovelphosphonatecompounds(80). containingadirect C-Pbond Nitroxyl(HNO): the TheBiochemistryofArchaealAmmoniaOxidation oneelectronreduced The most glaring problem presented by annotation of available genome sequences of AOA is andprotonated congenerofnitric theabsenceofthecanonicalbacterialpathwayforammoniaoxidation(Figure2).Theavailable oxideisahighly sequenceinformationindicatesthattheAOAaremissingallelementsofthebacterialpathway reactivenitrogen otherthangenescodingforthepresumptiveAMO.Nitrosopumiluslacksahomologofthebacterial speciesimplicatedin HAOandthecapacityforsynthesisofc-typecytochromes(23,80).Bacterialc-typecytochromes mammaliancell g composetheredox-activecentersoftheHAOandmediaterespiratorytransferofelectronsfrom signalingandasa or possibleintermediate s. HAOtotheterminaloxidase(Figure2).Thesedistinctivefeatureshadbeenpreviouslysuggested w inarchaealoxidation alreviee only. fsrpoomngteh,eCaennnaortcahtaieounmofsyammbeiotsaugmen(o2m3)i.cAselqthuoeungcehatshseempbhlyesdioflroogmyaoGf trhoautpu1nscyumltubrioendtaorfcahameoarninies ofammonia us nu unknown, the general genome features are similar to that of N. maritimus and suggestive of a anal w.on capacityforammoniaoxidationthatmayfunctionindetoxificationofspongenitrogenouswaste. ws wer As yet there is no evidence that the product of ammonia oxidation by the archaeal AMO is d from 2. For p hnyitdroroxxyyll(aHmNinOe.)AcnoualltderbneattihveepparothdwucatyopfrotphoesaerdchbyaeKalloAtzM,AOrp(6,a6n)d(Fciogllueraegu2e)s.(S8o0m)seugclgaersitfiecdattihoant e1 83-101. Downloadniversity on 09/24/ doiiasscifosrctntooahssnnesotsaleafylrrelvcrvlheeiondlalaeeutaaaetmlgidoepontsaon.atgrNhtihwliAyetarOdmyosiAovafcoera(irrslngduaeeucmnsahtnymeasdlsoplosneaowciiaisnletootosyn.vxpieAiidelsisasCs,tuniauomno-nbwdinaiagsstsheaadsenunmtHcoihcovAisepaOtlagdtc)oe,oivodsreduetrcogcphaeadnntfehedtrawiridtveauaepyrtreeffesrofsooresmrhnaotsmaugutmcelidhvnoeobcnmooeiafmectoophcxnaeoirdsmAieasrpOotvianoeArsnd-., 6:U AsshowninFigure 3,thegenescodingforthepresumptiveAMOremainthemostdiagnostic 012.6State featureofanammoniaoxidationpathwaycommontoallavailablegenomesequences.However, Rev. Microbiol. 2by San Francisco itpionpolraaitfnstuietaiortlirtcnhcoyoexaemrynlelci)pcnotat-norrloasiakttnriemvatpeirnearamontnhtsbnefereionarbtnsaifoetrai-ocrobhemnoesumohthnfaiedrstehturedeylnebNkocyntfirtoaarolwrolncsnAohtcOraapaelrdAnaouls.dsfaTeuamrchntmcedhosoeNafnirainitemard(oFomosoxixopgi-dunuaamciratteiiiolovu2nexs)i..cdgIoaenptniapoodemndrei(ptesir.ogohn.ta,e,shionnynsodltmyroytaxewyytolpsaeasmrrmvtiinaeclde-l u. Althoughthearchaealpathwayforammoniaoxidationhasnotbeenresolvedbycomparative n n A genomics,recentstudiesusingnitricoxide(NO)sensitivemicroelectrodesaresuggestivethatNO mayfunctioninthebiochemistry(47).MeasurableamountsofNOareproducedduringammonia oxidation. This has led to speculation that NO may be an intermediate or function as a redox shuttle, for instance, delivering electrons to the AMO (Figure 2). In contrast, the AOB draw electronsrequiredbythemonooxygenasefromthemembrane-associatedquinonepool.Either theformationofnitroxylasthefirstproductofammoniaoxidationortheuseofNOasanelectron redoxshuttleforhydroxylaminegenerationwouldeliminatetheneedtodrawelectronsdirectly from the quinone pool, either by obviating a requirement for reductant through formation of nitroxylorbydrawingelectronsfromalowerpotentialdonorinthereductionofnitritetoNO (Figure 2).Equations1and2showpossiblerecyclingofanNOredoxshuttle.Theassociated thermodynamic calculations assume that electrons for nitrite reduction originate from a donor specieswithanelectricalpotential(230mV)approximatelythatofac -typecytochromeandin 1 www.annualreviews.org • PhysiologyandDiversityofAmmonia-OxidizingArchaea 91 MI66CH05-Stahl ARI 14August2012 13:53 theknownrangeofplastocyanins. 2NO−+2e−+4H+→2NO+2H O 1. 2 2 2NO+O +NH +H O →NH OH+2NO−+2H+ 2. 2 3 2 2 2 Rx2(cid:2)Go(cid:5) =−103.4 KJ moleNH 3 Rx1(cid:2)Go(cid:5) =−12.5 KJ . − moleNO 2 Because the formation of hydroxylamine as the immediate product of the presumptive AMO hasnotbeendemonstratedyet,thearchaealpathwayforammoniaoxidationmustbeconsidered unresolvedatthistime. g s.or a AOB (Nitrosomonas europaea) w alreviee only. meOmubterarne us nu anal ww.son HAO 2H+ + HNO2 wer Periplasm d from 2. For p NH3 + O2 H2O + NH2OH cyt c5544e– cyt cM552 2H+ H+ 4H+ 012.66:83-101. DownloadeState University on 09/24/1 AMO 2e– QQH2 2e– cyt c25e5–3 2e–0.C5o Om24apHal3+exH I2VO QQNHA2D+ C+ oHNm+DHpH+le NIxA DIHADPC +o mPi4pHl+eAxmAT TVePPImnasnbeerarne Microbiol. 2n Francisco b AOA (Nitrosopumilus maritimus) (cytochrome aa3) (NoAxDidHo:ruebdiuqcutiansoen)e (ATP synthase) Rev. by Sa u. Electron shuttling to AMO via nitric oxide n An 2H+ + 2HNO2 CuNIR 2NO + 2H2O NXOR 2H+ + HNO2 H2O + HNO CuHAO 4H+ + HNO2 pcy H2O + NH2OH 4e– 2e– H+ H+ 2H+ 4H+ NH3 + O2 3 pcy pcy Cell 2e– 2 1 pcy pcy membrane Q Q Q AMO QH2 QRED QH2 NDH I QH2 aa3 ATPase NAD+ + H+ NADH 0.5 O2 H2O 2H+ H+ H+ 4H+ ADP + Pi ATP 4H+ QRED Complex I Complex III Complex IV Complex V (quinone (NADH:ubiquinone (cytochrome bb6)(cytochrome aa3)(ATP synthase) reductase) oxidoreductase) · 92 Stahl delaTorre

Description:
Sep 24, 2012 provide compelling evidence that the lineage of Archaea with which the Archaea and Bacteria in the waters west of the Antarctic Peninsula.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.