ebook img

Physics with Maple: computer algebra for mathematical methods in physics PDF

610 Pages·2006·4.33 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physics with Maple: computer algebra for mathematical methods in physics

Physics with Maple™ The Computer Algebra Resource for Mathematical Methods in Physics Frank Y. Wang WILEY-VCH Verlag GmbH&Co. KGaA December11, 2005 Contents Preface XI GuideforUsers XVII Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIX 1 Introduction 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 BasicAlgebraandSolvingEquations . . . . . . . . . . . . . . . . . . . . . 10 1.3 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 DifferentialEquations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4.1 ExactSolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4.2 SpecialFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4.3 NumericalSolutions . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5 VectorsandMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2 OscillatoryMotion 41 2.1 SimpleHarmonicOscillator . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2 DampedOscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.1 Overdamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2.2 Underdamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.3 CriticalDamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.3 SinusoidallyDrivenOscillation . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.4 PhaseSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3 CalculusofVariations 71 3.1 Euler–LagrangeEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 MathematicalExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3 SymmetryProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.4 PrincipleofLeastAction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.5 SystemswithManyDegreesofFreedom . . . . . . . . . . . . . . . . . . . . 86 3.6 ForceofConstraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 PhysicswithMaple™:TheComputerAlgebraResourceforMathematicalMethodsinPhysics.FrankY.Wang Copyright©2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-40640-9 VI Contents 4 IntegrationofEquationsofMotion 101 4.1 LinearizationofEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 DoublePendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3 Central-forceProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.1 KeplerProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.2 CorrectionTerms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4 MotionofaSymmetricTop . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.5 NonlinearOscillationandChaos . . . . . . . . . . . . . . . . . . . . . . . . 126 4.6 SummaryofLagrangianMechanics . . . . . . . . . . . . . . . . . . . . . . 134 5 OrthogonalFunctionsandExpansions 139 5.1 FourierSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2 FourierIntegrals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3 OrthogonalFunctionsinCompleteSets . . . . . . . . . . . . . . . . . . . . 146 5.4 LegendrePolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.4.1 GeneratingFunctionandRodriguesFormula . . . . . . . . . . . . . 151 5.5 BesselFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.6 SummaryofSpecialFunctions . . . . . . . . . . . . . . . . . . . . . . . . . 163 6 Electrostatics 169 6.1 Coulomb’sLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.2 CurvilinearCoordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 6.2.1 SphericalCoordinates . . . . . . . . . . . . . . . . . . . . . . . . . 174 6.2.2 CylindricalCoordinates . . . . . . . . . . . . . . . . . . . . . . . . 178 6.3 DifferentialVectorCalculus . . . . . . . . . . . . . . . . . . . . . . . . . . 180 6.4 ElectricPotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.4.1 Cavendish’sApparatusfortheInverseSquareLaw . . . . . . . . . . 186 6.4.2 MultipoleExpansion . . . . . . . . . . . . . . . . . . . . . . . . . . 190 6.5 ElectricFieldandEquipotential . . . . . . . . . . . . . . . . . . . . . . . . 197 7 Boundary-valueProblems 205 7.1 TheoryofPotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 7.2 MethodofImages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 7.3 Complex-variableTechniques . . . . . . . . . . . . . . . . . . . . . . . . . 208 7.4 LaplaceEquationinCartesianCoordinates. . . . . . . . . . . . . . . . . . . 214 7.5 LaplaceEquationinSphericalCoordinates. . . . . . . . . . . . . . . . . . . 218 7.6 LaplaceEquationinCylindricalCoordinates. . . . . . . . . . . . . . . . . . 223 7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 8 Magnetostatics 235 8.1 MagneticForces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 8.2 Biot–SavartLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 8.3 VectorPotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 8.4 ForceandTorqueonMagneticDipoles. . . . . . . . . . . . . . . . . . . . . 250 8.5 SummaryofElectromagnetisminStaticConditions . . . . . . . . . . . . . . 253 Contents VII 9 ElectricCircuits 259 9.1 ResistorsinSeriesandinParallel. . . . . . . . . . . . . . . . . . . . . . . . 259 9.2 Kirchhoff’sRules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 9.3 Direct-currentCircuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 9.3.1 RC Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 9.3.2 RLCircuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 9.3.3 RLC Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 9.3.4 LissajousFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 9.4 Alternating-currentCircuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 9.4.1 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 9.4.2 Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 10 Waves 283 10.1 WaveEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 10.2 VibratingString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 10.3 SinusoidalWavesinLinearCombinations . . . . . . . . . . . . . . . . . . . 290 10.3.1 ComplexNotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 10.3.2 FourierIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 10.3.3 UncertaintyPrinciple . . . . . . . . . . . . . . . . . . . . . . . . . . 292 10.4 GaussianWavePacket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 10.5 Two-dimensionalCircularMembrane . . . . . . . . . . . . . . . . . . . . . 301 10.6 ElectromagneticWaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 10.6.1 Electric-dipoleRadiation . . . . . . . . . . . . . . . . . . . . . . . . 306 10.6.2 SynchrotronRadiation . . . . . . . . . . . . . . . . . . . . . . . . . 312 11 PhysicalOptics 321 11.1 LightasanElectromagneticWave . . . . . . . . . . . . . . . . . . . . . . . 321 11.1.1 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 11.2 MathematicsofInterference . . . . . . . . . . . . . . . . . . . . . . . . . . 325 11.3 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 11.3.1 Double-slitInterference . . . . . . . . . . . . . . . . . . . . . . . . 329 11.3.2 Multiple-slitInterference . . . . . . . . . . . . . . . . . . . . . . . . 330 11.4 Diffraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 11.4.1 ResolutionofSingleSlitsandCircularApertures . . . . . . . . . . . 336 11.5 DiffractionGrating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 11.6 FourierTransformSpectrometry . . . . . . . . . . . . . . . . . . . . . . . . 343 11.7 FresnelDiffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 12 SpecialRelativity 353 12.1 LorentzTransformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 12.1.1 LengthContractionandTimeDilation . . . . . . . . . . . . . . . . . 357 12.1.2 AdditionofVelocity . . . . . . . . . . . . . . . . . . . . . . . . . . 361 12.1.3 DopplerShift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 12.2 RelativisticKinematicsandDynamics . . . . . . . . . . . . . . . . . . . . . 367 12.3 TransformationsofElectromagneticFields. . . . . . . . . . . . . . . . . . . 373 VIII Contents 13 QuantumPhenomena 379 13.1 BlackbodyRadiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 13.2 PhotoelectricandComptonEffects . . . . . . . . . . . . . . . . . . . . . . . 383 13.3 Wave–ParticleDuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 13.4 BohrModeloftheHydrogenAtom. . . . . . . . . . . . . . . . . . . . . . . 387 13.5 DielectricsandParamagnetism . . . . . . . . . . . . . . . . . . . . . . . . . 390 14 SchrödingerEquationinOneDimension(I):UnboundStates 401 14.1 FormulationofQuantumMechanics . . . . . . . . . . . . . . . . . . . . . . 401 14.2 ZeroPotentialandPlaneWaves . . . . . . . . . . . . . . . . . . . . . . . . 403 14.3 StepPotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 14.3.1 StepPotential(E >V0) . . . . . . . . . . . . . . . . . . . . . . . . 404 14.3.2 StepPotential(E <V0) . . . . . . . . . . . . . . . . . . . . . . . . 407 14.4 BarrierPotential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 14.4.1 BarrierPotential(E >V0) . . . . . . . . . . . . . . . . . . . . . . . 409 14.4.2 BarrierPotential(E <V0) . . . . . . . . . . . . . . . . . . . . . . . 410 14.5 SummaryofStationaryStates . . . . . . . . . . . . . . . . . . . . . . . . . 411 14.6 WavePacket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 14.6.1 ReflectionofWavePacket . . . . . . . . . . . . . . . . . . . . . . . 417 15 SchrödingerEquationinOneDimension(II):BoundStates 425 15.1 DiscreteSpectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 15.2 InfinitePotentialWell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 15.3 FinitePotentialWell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 15.4 SeriesSolutionandHermiteEquation . . . . . . . . . . . . . . . . . . . . . 436 15.5 LinearHarmonicOscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 15.6 HomogeneousField . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 15.7 MorsePotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 15.8 BoundNonstationaryStates . . . . . . . . . . . . . . . . . . . . . . . . . . 449 15.9 Two-stateSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 16 SchrödingerEquationinThreeDimensions 465 16.1 Central-forceProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 16.2 SphericalHarmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 16.3 AngularMomentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 16.4 CoulombPotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 16.5 HydrogenAtom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 16.5.1 ElectricPotentialDuetotheElectron . . . . . . . . . . . . . . . . . 492 16.5.2 HybridBondOrbitals. . . . . . . . . . . . . . . . . . . . . . . . . . 494 16.6 InfiniteSphericalWell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 17 QuantumStatistics 509 17.1 StatisticalDistributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 17.2 Maxwell–BoltzmannStatistics . . . . . . . . . . . . . . . . . . . . . . . . . 512 Contents IX 17.3 IdealBoseGas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515 17.3.1 LowDensityandVirialExpansion . . . . . . . . . . . . . . . . . . . 518 17.3.2 Bose–EinsteinCondensationatLowTemperature . . . . . . . . . . . 522 17.4 IdealFermiGas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 17.4.1 LowDensityandVirialExpansion . . . . . . . . . . . . . . . . . . . 530 17.4.2 SpecificHeatofaMetalatLowTemperature . . . . . . . . . . . . . 531 17.5 RelativisticGases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538 18 GeneralRelativity 545 18.1 BasicFormulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 18.2 NewtonianLimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 18.2.1 GravitationalRedshift . . . . . . . . . . . . . . . . . . . . . . . . . 551 18.3 SchwarzschildSolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553 18.4 Robertson–WalkerMetric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 18.4.1 EvolutionoftheUniverse . . . . . . . . . . . . . . . . . . . . . . . 565 Appendix A PhysicalandAstrophysicalConstants 577 B MathematicalNotes 579 B.1 LegendreEquationandSeriesSolutions . . . . . . . . . . . . . . . . . . . . 579 B.2 WhittakerFunctionandHypergeometricSeries . . . . . . . . . . . . . . . . 583 B.2.1 HarmonicOscillator . . . . . . . . . . . . . . . . . . . . . . . . . . 584 B.2.2 MorsePotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 B.2.3 CoulombPotential . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 B.3 Clausius–MossottiEquation . . . . . . . . . . . . . . . . . . . . . . . . . . 589 B.4 Bose–EinsteinIntegralFunction . . . . . . . . . . . . . . . . . . . . . . . . 592 B.5 EmbeddingFormula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596 Index 599 Preface Physicsisguidedbysimpleprinciples,butformanytopicsthephysicstendstobeobscuredin theprofusionofmathematics.Asinteractivesoftwareforcomputeralgebra,Maple†canassist educatorsand students to overcomethe obstacle of mathematicaldifficulties. The objective ofthisbookistointroduceMaplebothforteachingandlearningphysicsbytakingadvantage ofthemathematicalpowerofsymboliccomputation,sothatonecanconcentrateonapplying theprinciplesofsettingequations,insteadoftechnicaldetailsofsolvingequations. Mostphysicstextbookswerewrittenbeforeadvancedcomputersoftwarebecameconveniently available.Theconventionalapproachtoatopicplacesemphasisontheoryandformalism,de- voting manyparagraphsto performingalgebraicoperationsin derivingequationsmanually; otherthansomewellknownexamples,mostapplicationsoftheoryareomitted. Onereason that those examplesare well knownis that they admit analytic solution: they typically rep- resent simplified situations that generally fail to fully reflect the reality. In most situations, analytic solutions simply do not exist, and one cannot proceed without the assistance of a computer. Althoughsomebookshavesectionsdiscussingnumericalmethods,manyofthem contain just the theory of numerical methods, and one is required to possess programming skillforpractice;thispartishencegenerallyneglected.Essentiallyallexperimentsinphysics measurenumbers,soanyformulationmusteventuallybereducibletonumbers.Underacon- ventional curriculum, a student’s ability to calculate and to extract numerical results from the formalism is somehow inadequate. The result is not surprising: a studentmay be weak in those areas, and he or she thus achievesonly partialcomprehensionbecause of technical difficulties. Maple can remedy some deficiency or weakness in traditional training. Using Maple, one canmanipulateequationsanddiminishtediouspaperworkthatdistractsfromthemainfocus of learningphysics. It is particularlyuseful in problemsthat require extensive calculations, such as problems in calculus involving the chain rule, change of variables, and integration by parts. Maple is such a powerfulsoftware that an educator can introducemore advanced topicswithoutbeingrestricted to thepresumedmathematicalbackgroundof students, anda studentcanexploremoreadvancedapplicationswithoutfearofmathematicaldifficulty.From an analytic solution one can obtain numericalresults by substituting numerical values. For equations that admit no analytic solution, one can, in practice, solve them numerically if proper initial conditionsare supplied. An importantfeature of Maple is that it can produce †MapleisaregisteredtrademarkofMaplesoft,adivisionofWaterlooMapleInc.; see . (cid:1)(cid:2)(cid:2)(cid:3)(cid:4)(cid:5)(cid:5)(cid:6)(cid:6)(cid:6)(cid:7)(cid:8)(cid:9)(cid:3)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:2)(cid:7)(cid:15)(cid:13)(cid:8) PhysicswithMaple™:TheComputerAlgebraResourceforMathematicalMethodsinPhysics.FrankY.Wang Copyright©2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-40640-9 XII Preface instantgraphicstoserveasavisualguide,whichisgenerallythebestwaytounderstandthe underlyingphysics. TaketheBessel functionsasanexample: manystudentsandevenresearchersfind theseso- calledspecialfunctionsalien,despitetheirfrequentrecurrenceindiversebranchesofphysics. OnereasonisthatthetreatmentofBesselfunctionsrequiresnumericalmethods,withwhich noteverybodyis adequatelyfamiliar. Many physicists have never produceda numberfrom suchfunctions,andaworkedexampleofexpansioninBesselfunctionsislackingfrommost commonlyused textbooks. Can we imagine a studentlearningthe relationsforthe trigono- metricfunctionsandFourierserieswithouteverproducinganumber?Maplereducesroutines oftheBesselfunctionstoasimplecommand,whichsparesonefromatediousandprotracted processofprogramminganddebugging,andcanproduceplotsinteractively. Themosteffec- tivewaytolearnsuchfunctionsistopractisethem,bycalculatingtheexpansioncoefficients, similartothoseintheFourierseries,andobservingthegraphicaloutput.Maplecanservenot onlyforpedagogicalpurposes:inpracticeitismuchmoreconvenienttoevaluatecoefficients forexpansionsinorthogonalfunctionswithacomputerthanitisbylongmanualcalculations. TherealreadyexistmanybooksonMaple,whichindicatesthatMapleisacommonbutintrin- sicallycomplicatedsoftware. Maplecontainsliterallythousandsofcommandsandoperators, fromthemostelementarytothequitecomplicated. Fewpeopleareproficientineveryaspect ofthissoftware,noteventheauthor! Thepurposeofthisbookistousebasiccommandsin Maple,so thatoneisnotdauntedbythesoftwareitself, todemonstratewhatcanbeaccom- plished. From worked examples, a reader can develop a sense of knowing which problems are amenableto the assistance of Maple. Thisbookis notintendedfor someonewho seeks to explore diverse Maple commands; on the contrary, we generally limit ourselves to basic ones. AlthoughMapleisapowerfulsoftware,itisnottheonlytoolnorisittheperfecttool inmathematicalphysics. ForsomeproblemsMaplecanbeoftremendoushelp,whereasfor othersan alternativeapproachmightbe more appropriate. Identifyingthe typesof problem thatarewellsuitedtothecapabilityofMapleisanimportantskill,anditisthemainpurpose ofthisvolume. Thisbookisorganizedaccordingtothefieldsofphysics,coveringclassicalmechanics,elec- tromagnetism, relativity, quantummechanicsand statistical mechanics. We select problems that we consider suitable for Maple, and each is representative of its kind so that one can modifyandadaptaworksheetforasimilarproblem. Ourphilosophyofsolvingproblemsis toapplyMaple’scapabilitytoattackthemathematicsinadirectfashion,sothatweavoiddi- gressionintointricatemathematicalmanipulation. Becausemostproblemsadmitnoanalytic solution,weparticularlyemphasizeformingplotsbasedonnumericalsolution.Agraphicpre- sentationofasolutionprovidesthemostenduringimpression,andbyexperimentingthrough varying values of parameters and observing the graphic output, one can develop a sense of intuitionandorderofmagnitude.Astrongphysicalintuitiontowardaproblemisarguablythe mostimportantassetofanyphysicistorengineer. Inourpresentation,therelevantformulationprecedeseachproblem;wedevoteparticularat- tentiontosubjectsthatarelesscommonlypresentedinconventionaltextbooksbutarecrucial for computation. Mathematicalformulasof the problemand results of calculationsare out- Preface XIII lined, omitting the details of intermediate steps. Our intentionis to guide the reader with a clearmathematicalobjectivethroughconventionalequationsandtheirsymbols. Theomitted portionofcalculationsislistedintheattachedMapleworksheet,withashortexplanationifit isnotself-explanatory. Inaworksheet,weattempttoperformmostcalculationsusingbasic Maplecommands.Otherthanusinga“FOR”loopinsomeexamples,wedonotexplicitlyuti- lizetheprogrammingabilityofMaple. Insomesituations,rearrangementandsimplification of an expression are done manually; we avoid unnatural steps in Maple that might confuse readers. For most physical problems an alternative solution is practicable: we emphasize directnessandconsistency,notelegance. Mapleisinteractivesoftware, thuspresentingworksheetsina static formconstitutesa great challenge. Because the feature of this book is to use simple commands to solve physical problems,mostMapleplotsaregeneratedinthedefaultmode.Withoutoptionalcommandsto refinetheplots,someofthemmightappearlesssatisfactory.Ourcompromiseisbasedonour contentionthatcommandspurelyforgraphornamentationarelessimportantandpotentially distracting for the purpose of this book. When one tries the worksheets on a computer, it is easy to discern the plots. In the same spirit, we believe that no matter how detailed the worksheetmay be, the best way to learn Maple is to experimentwith examples, and in this process one naturally learns the commands which are new or unfamiliar to one when first encounteredinprintedpages. Additionally,oneshouldtakeadvantageofthecomprehensive indexofMaplecommandsusedinthisbook,whichgreatlyfacilitateslearningbyexamples. The first chapter is an illustration of basic algebraic operations with Maple, through their applicationtophysics. BecausemostMaplecommandsareeasytounderstand,wehopethat, even if one is unfamiliar with this software, one can follow those examples and develop a senseofthepotentialofMaple. We begin our treatment of classical mechanics with oscillatory motion. Problems such as solving a system of equations and solving differential equations with constant coefficients, canbereadilyaccomplishedwithMaple.WethenintroduceLagrangianmechanics:thistopic providesaperfectexampleforwhichMaplecanbeofgreatassistance. Therequiredmathe- maticsinvolvesfindinga functionthatextremizesanintegral: thistypeofproblemis called the calculus of variations, and calculations are typically extensive even for simple systems. WedevelopinMapleamethodtoderivetheequationofmotionwithoutinvokinganexternal library. We furtheruse Maple’s capabilityof solving differentialequations, symbolicallyor numerically,tofindtheactualmotionofaparticle.Withthismethodwecanpracticallysolve anyprobleminclassicalmechanicsforwhichtheLagrangianfunctionisknown. Achapteronexpansioninorthogonalfunctionsservesasapreparationforsubsequentchap- ters. We start with the Fourierseries; a task suchas calculatingthe Fouriercoefficientsis a particularlyvaluableapplicationofMaple. ThereisanevengreaterbenefitinusingMaplefor expansionsinvolvingotherorthogonalfunctions,mostnotablytheBesselfunctions:thelatter topicisacommonweaknessamongstudents. Wepresentindetailmanyworkedexamplesto demonstrateMaple’sgreatutilityforthispurpose.

Description:
Written by an experienced physicist who is active in applying computer algebra to relativistic astrophysics and education, this is the resource for mathematical methods in physics using Maple and Mathematica . Through in-depth problems from core courses in the physics curriculum, the author guides s
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.