Physics and Chemistry of Graphene Physics and Chemistry of Graphene Graphene to Nanographene Second Edition edited by Toshiaki Enoki | Tsuneya Ando Publishedby JennyStanfordPublishingPte.Ltd. Level34,CentennialTower 3TemasekAvenue Singapore039190 Email:[email protected] Web:www.jennystanford.com BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. PhysicsandChemistryofGraphene:GraphenetoNanographene (SecondEdition) Copyright(cid:2)c 2020JennyStanfordPublishingPte.Ltd. Allrightsreserved.Thisbook,orpartsthereof,maynotbereproducedinany form or by any means, electronic or mechanical, including photocopying, recordingoranyinformationstorageandretrievalsystemnowknownorto beinvented,withoutwrittenpermissionfromthepublisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not requiredfromthepublisher. ISBN978-981-4800-38-9(Hardcover) ISBN978-0-429-02331-6(eBook) Contents Preface xiii 1 Introduction 1 2 TheoryofElectronicStatesandTransportinGraphene 9 TsuneyaAndo 2.1 Introduction 9 2.2 ElectronicStatesofMonolayerGraphene 11 2.2.1 MasslessDiracElectron 11 2.2.2 Berry’sPhaseandTopologicalAnomaly 16 2.2.3 LandauLevelsinMagneticFields 18 2.2.4 EffectsofBand-GapOpening 20 2.3 MagneticProperties 21 2.3.1 SingularDiamagnetism 21 2.3.2 EffectsofBand-GapOpening 24 2.3.3 MagneticScreeningandMirroring 26 2.4 OpticalProperties 29 2.5 TransportProperties 32 2.5.1 BoltzmannConductivity 32 2.5.2 ChargedImpurities 35 2.5.3 Self-ConsistentBornApproximationand Zero-ModeAnomalies 38 2.5.4 QuantumHallEffect 46 2.5.5 ValleyHallEffectandChiralBoundaryState 50 2.5.6 ResonantScatteringbyLatticeDefects 57 2.5.7 CrossoverbetweenLocalizationand Antilocalization 61 2.6 PhononsandElectron–PhononInteraction 63 2.6.1 AcousticPhonon 63 vi Contents 2.6.2 OpticalPhonon 65 2.6.3 Zone-BoundaryPhonon 67 2.7 BilayerGraphene 70 2.7.1 ElectronicStates 70 2.7.2 MagneticProperties 75 2.7.3 OpticalProperties 77 2.7.4 TransportProperties 81 2.7.5 ValleyHallEffect 87 2.7.6 PhononsandElectron–PhononInteraction 92 2.8 Multi-LayerGraphene 95 2.9 SummaryandFutureOutlook 99 3 ExperimentalApproachestoGrapheneElectronTransport forDeviceApplications 117 AkinobuKandaandHikariTomori 3.1 Introduction 117 3.2 FormationofGraphene 119 3.2.1 ScotchTapeMethod 121 3.2.2 DeterminationoftheNumberofLayers 125 3.2.2.1 Opticalmicroscopy 125 3.2.2.2 Ramanspectroscopy 130 3.2.2.3 Transportmeasurement 134 3.2.3 OtherTechniquesforFormationofGraphene 136 3.2.3.1 ThermaldecompositionofSiC 137 3.2.3.2 Chemicalvapordepositiononmetallic substrates 138 3.3 ExperimentsonTransportPropertiesofGraphenefor DeviceApplications 141 3.3.1 SampleGeometries 141 3.3.1.1 Two-andfour-terminal measurements 141 3.3.1.2 Hallbargeometry 143 3.3.1.3 Corbinogeometry 145 3.3.1.4 vanderPauwmethod 146 3.3.2 GateVoltageDependenceofConductivityof GraphenePlacedonSiO 148 2 Contents vii 3.3.3 ImprovingMobilityofGraphene 160 3.3.3.1 Effectofphononscattering 161 3.3.3.2 Experimentaltechniquestoimprove mobility 167 3.3.4 BandGapEngineering 174 3.3.4.1 Graphenenanoribbons 175 3.3.4.2 Bilayergrapheneunderperpendicular electricfields 184 3.3.4.3 Othermethodsforbandgapformation 191 3.4 Summary 191 4 ElectronicPropertiesofNanographene 203 KoichiKusakabe 4.1 Introduction 203 4.2 ElectronicStatesofGraphene 206 4.2.1 DescriptionbyDensityFunctionalTheory 209 4.2.2 Tight-BindingModel 212 4.2.3 Effective-MassDescription 218 4.3 PhysicalPropertiesofGrapheneRibbons 220 4.3.1 ShapeoftheGrapheneEdges 221 4.3.2 NanoribbonStructures 222 4.3.3 ElectronicBandStructureofGraphene Nanoribbons 223 4.3.3.1 Armchairribbons 225 4.3.3.2 Zigzagribbons 230 4.3.3.3 Beardedribbons 232 4.3.4 EdgeStates 235 4.3.4.1 Edgestatesofthesemi-infinite model 235 4.3.4.2 Edgestatesofthefinitewidthmodel 237 4.4 PhysicalPropertiesofPointDefects,Graphene Fragments,andNanoholes 242 4.4.1 HydrogenAdatoms 243 4.4.2 BareandHydrogenatedVacancies 249 4.4.3 GrapheneFragments 254 4.4.4 Nanoholes 257 viii Contents 4.5 MagneticFieldEffects 258 4.5.1 PeierlsPhase 259 4.5.2 DiamagneticResponse 260 4.5.3 ParamagneticResponse 261 4.6 ElectronTransportProperties 262 4.6.1 ScatteringTheory 263 4.6.2 ConductanceofZigzagGrapheneRibbons 264 4.7 SymmetryandCorrelationEffectsforNanographene 266 4.7.1 TopologicalSymmetryArgument 266 4.7.1.1 Particle–holesymmetryoftheTBM 267 4.7.1.2 Ryu–Hatsugaicriterionbychiral symmetry 269 4.7.1.3 GlideSymmetry 274 4.7.2 StrongCorrelationEffects 280 4.7.2.1 Magnetismbylocalizedmoments 281 4.7.2.2 Half-metalliczigzagribbonsandedge statesindeformedarmchairribbons 285 4.7.2.3 Kondoeffect 289 4.8 Summary 293 5 ChemistryofPolycyclicAromaticHydrocarbons 309 AkihitoKonishiandTakashiKubo 5.1 Introduction 309 5.2 ABriefIntroductionofPAHs 310 5.2.1 CategoriesofPolycyclicAromatic Hydrocarbons 310 5.2.2 BriefHistoryofAromaticSextet 312 5.2.3 ClarSextetinRelationtothePropertyofPAHs 314 5.3 ElectronicStructureandChemicalReactivityof GrapheneandNanographene 318 5.4 RecentAdvancedStudiesonPAHs:Synthesis, Property,andApplication 323 5.5 RecentAdvancesinChemicalPreparationof NanographeneandGrapheneNanoribbons (GNRs) 329 5.5.1 ChemicalSynthesesforGNRsinLiquid Phase 329 5.5.2 MetalSurface–AssistedGNRsSyntheses 332 Contents ix 5.6 ElectronicStructureofPAHs 338 5.6.1 EffectsofEdgeShapesontheElectronic StructureofPAHs 338 5.6.2 PredictionoftheSpinMultiplicityinthe GroundState:OvchinnikovRule 341 5.6.3 NonKekule´-TypePAHs 343 5.6.4 Kekule´-TypePAHs 348 5.6.4.1 Theoreticaltreatmentofsinglet biradicalcharacter 348 5.6.4.2 Linearsystem:Quantumchemical predictionofspinstructureinthe groundstate 349 5.6.4.3 Linearsystem:Isolationand characterizationoflargeacenes 350 5.6.4.4 Two-dimensionalsystem:Quantum chemicalpredictionofspinstructure inthegroundstate 351 5.7 DetailedDiscussiononSpin-PolarizedStateat ZigzagEdgesofKekule´-TypePAHs 358 5.7.1 TheoreticalBackbone 358 5.7.2 SyntheticAttemptstowardPeritetracene andPeripentacene 362 5.7.3 SynthesesofAnthenes 363 5.7.4 GeometricalConsiderationofSinglet BiradicalCharacter 366 5.7.5 Singlet–TripletEnergyGap 367 5.7.6 OpticalProperties 369 5.8 ConcludingRemarks 370 6 ExperimentalApproachtoElectronicandMagnetic PropertiesofNanographene 391 ToshiakiEnoki 6.1 Introduction 391 6.2 FabricationofGrapheneNanostructures 393 6.2.1 ChemicalVaporDeposition 394 6.2.2 GrapheneOxides 397 6.2.3 UnzippingofCarbonNanotubes 398 6.2.4 Heat-InducedStructuralChanges 400