ebook img

Physical hydrodynamics PDF

547 Pages·2015·20.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physical hydrodynamics

PHYSICAL HYDRODYNAMICS Physical Hydrodynamics Second Edition Etienne Guyon HonorarydirectorofEcolenormalesupérieure.EcolesupérieuredePhysiqueetChimie(Paris) Jean-Pierre Hulin SeniorCNRSResearchScientist,Emeritus,FASTLaboratory,Paris-SaclayUniversity. Luc Petit ProfessorofPhysics,ILMLaboratory,UniversitéClaudeBernard-Lyon1 Catalin D. Mitescu ProfessorofPhysics,EmeritusatPomonaCollege 3 3 GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries TranslatedwithrevisionsandextensionsfromtheFrenchlanguageeditionof: Hydrodynamiquephysique–3eédition DeEtienneGuyon,Jean-PierreHulinetLucPetit ©2012EditionsEDPSciences EnglishEdition©OxfordUniversityPress2015 Themoralrightsoftheauthorshavebeenasserted FirstEditionpublishedin2001 Impression:1 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressControlNumber:2014936053 ISBN978–0–19–870244–3(hbk.) ISBN978–0–19–870245–0(pbk.) Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork. Foreword Fluid mechanics is a subject with a long history, but yet is young with regard to recent discoveries,andhasmanyapplicationswhichaffecteverydaylife.Itshistoryisaparadeof thegreatnamesofscience:fromtheeighteenthcenturytheBernoullis,EulerandLagrange; fromthenineteenthcenturyCauchy,Navier,Stokes,Helmholtz,Rayleigh,Reynoldsand Lamb;andfromthetwentiethcenturyCouette,Prandtl,G.I.TaylorandKolmogorov. Inthenaturalenvironment,wecannowrelyonthe5-dayweatherforecastsandtornado warnings; early success in predicting tides is today applied to automated tsunami warn- ings;understandingthecirculationintheoceansandatmosphereisappliedtopollution, theozoneholeandclimatechange.Intheinterioroftheearth,fluidmechanicsisimpor- tantinmantleconvection,volcanoesandtheirdustclouds,oilreservoirsandpossibleCO2 sequestration. Fluid mechanics is central to many industries. The design of aircraft developed from simpleideasintheearlytwentiethcenturytolow-dragformsofwingswithwingletsattheir tipsandimprovedbodyprofilesbytheendofthecentury.Atthesametime,jet-noisewas dramaticallyreducedwiththeintroductionofwideentrancebypassfanswhichshieldthe fastjet.Simpleandcomplexfluidsareprocessedinvariousmanufacturingindustries:for glassandothermaterials,chemicalengineeringandfoodprocessing. Recentresearchinfluidmechanicsincludes:microfluidicsatthemicronscalewiththe possibility of multiple simultaneous tests of small biological samples; similar scales and effects of wettability in ink-jet-printing; the ideas of convection allowing the design of energy-efficientbuildingsbyusingnaturalconvection;andthecontrolofinstabilitiesand turbulence. Withsuchawealthofideasandapplications,thereisamajorchallengeofhowtoteach thesubject.SomematerialisbestlefttospecializedMasterscourses.Butthebasiccorehas tobetaughtinawaytohelpstudents’progresstotheadvancedtopics,currentandfuture. Theauthorsofthisbookhaveadoptedinmyopinionanapproachandstylewhichshould interestandeducatestudents,preparingthemforthefuture.Ifearthatsomealternative approachesfailonthis:someengineeringcourseshaveanover-relianceonComputational FluidDynamics,whichcanbeunsafeinnovelapplications;somemathematicalcoursesare lost in the enormous difficulty of proving the governing equations have, or do not have, solutionsinthesimplestofsituations,anopenClayprizeproblem.Theapproachinthis bookisgroundedinexperimentandreality.Thechosenstructureofthepresentationhelps studentscometodeepinsightsintothesubject. In my opinion, the subject of fluid mechanics has benefited in the last 30 years from the contributions of French physicists such as the authors of this book, bringing a fresh approachtothesubjectalongwithnovelexperimentaltechniquesandanappreciationof practicalities. JohnHinch UniversityofCambridge Contents Introduction xv 1 ThePhysicsofFluids 1 1.1 Theliquidstate 1 1.1.1 Thedifferentstatesofmatter:modelsystemsandrealmedia 2 1.1.2 Thesolid–liquidtransition:asometimesnebulousboundary 5 1.2 Macroscopictransportcoefficients 5 1.2.1 Thermalconductivity 6 1.2.2 Massdiffusion 11 1.3 Microscopicmodelsfortransportphenomena 13 1.3.1 Therandomwalk 13 1.3.2 Transportcoefficientsforidealgases 15 1.3.3 Diffusivetransportphenomenainliquids 19 1.4 Surfaceeffectsandsurfacetension 21 1.4.1 Surfacetension 21 1.4.2 Pressuredifferencesassociatedwithsurfacetension 23 1.4.3 Spreadingofdropsonasurface–theideaofwetting 25 1.4.4 Influenceofgravity 27 1.4.5 Somemethodsformeasuringthesurfacetension 29 1.4.6 TheRayleigh–Taylorinstability 31 1.5 Scatteringofelectromagneticwavesandparticlesinfluids 33 1.5.1 Someprobesofthestructureofliquids 33 1.5.2 Elasticandinelasticscattering 34 1.5.3 Elasticandquasielasticscatteringoflight:atoolforstudyingthestructureanddiffusivetransportinliquids 37 1.5.4 Inelasticscatteringoflightinliquids 40 1A Appendix-Transportcoefficientsinfluids 42 2 MomentumTransportUnderVariousFlowConditions 43 2.1 Diffusiveandconvectivetransportofmomentuminflowingfluids 43 2.1.1 Diffusionandconvectionofmomentum:twoillustrativeexperiments 43 2.1.2 Momentumtransportinashearflow–introductionoftheviscosity 45 2.2 Microscopicmodelsoftheviscosity 48 2.2.1 Viscosityofgases 48 2.2.2 Viscosityofliquids 49 2.2.3 Numericalsimulationofmoleculartrajectoriesinaflow 51 2.3 Comparisonbetweendiffusionandconvectionmechanisms 52 2.3.1 TheReynoldsnumber 52 2.3.2 Convectiveanddiffusivemass,orthermalenergy,transport 53 2.4 Descriptionofvariousflowregimes 55 2.4.1 Flowsinacylindricaltube:Reynolds’experiment 56 2.4.2 Variousflowregimesinthewakeofacylinder 57 2.4.3 Flowbehindasphere 58 viii Contents 3 KinematicsofFluids 60 3.1 Descriptionofthemotionofafluid 60 3.1.1 Characteristiclinearscalesandthehypothesisofcontinuity 60 3.1.2 EulerianandLagrangiandescriptionsoffluidmotion 61 3.1.3 Accelerationofaparticleoffluid 61 3.1.4 Streamlinesandstream-tubes,trajectoriesandstreaklines 63 3.2 Deformationsinflows 64 3.2.1 Localcomponentsofthevelocitygradientfield 64 3.2.2 Analysisofthesymmetriccomponentoftherateofstraintensor:purestrain 65 3.2.3 Antisymmetriccomponentofthetensoroftherateofdeformation:purerotation 68 3.2.4 Application 70 3.2.5 Caseoflargedeformations 71 3.3 Conservationofmassinamovingfluid 72 3.3.1 Equationfortheconservationofmass 73 3.3.2 Conditionforanincompressiblefluid 73 3.3.3 Rotationalflows;potentialflows 75 3.4 Thestreamfunction 75 3.4.1 Introductionandsignificanceofthestreamfunction 75 3.4.2 Streamfunctionsfortwo-dimensionalflows 77 3.4.3 Streamfunctionsforaxiallysymmetricflows 79 3.5 Visualizationandmeasurementofthevelocityandofthevelocitygradientsinflows 80 3.5.1 Visualizationofflows 81 3.5.2 Concentrationmeasurements 83 3.5.3 Afewmethodsformeasuringthelocalvelocityinafluid 83 3.5.4 Measurementsofthevelocityfieldandofvelocity–gradientsinaflowingfluid 86 4 Dynamicsofviscousfluids:rheologyandparallelflows 90 4.1 Surfaceforces 90 4.1.1 Generalexpressionforthesurfaceforces:stressesinafluid 90 4.1.2 Characteristicsoftheviscousshearstresstensor 92 4.1.3 Theviscousshear-stresstensorforaNewtonianfluid 93 4.2 Equationofmotionforafluid 95 4.2.1 Generalequationforthedynamicsofafluid 95 4.2.2 Navier–StokesequationofmotionforaNewtonianfluid 97 4.2.3 Euler’sequationofmotionforanidealfluid 97 4.2.4 DimensionlessformoftheNavier–Stokesequation 98 4.3 Boundaryconditionsforfluidflow 98 4.3.1 Boundaryconditionatasolidwall 98 4.3.2 Boundaryconditionsattheinterfacebetweentwofluids:surfacetensioneffects 99 4.4 Non-Newtonianfluids 101 4.4.1 Measurementofrheologicalcharacteristics 101 4.4.2 Time-independentnon-Newtonianfluids 102 4.4.3 Non-Newtoniantime-dependentfluids 106 4.4.4 Complexviscosityandelasticityofviscoelasticfluids 108 4.4.5 Anisotropicnormalstresses 111 4.4.6 Elongationalviscosity 113 4.4.7 Summaryoftheprincipalkindsofnon-Newtonianfluids 114 4.5 One-dimensionalflowofviscousNewtonianfluids 115 4.5.1 Navier–Stokesequationforone-dimensionalflow 115 Contents ix 4.5.2 Couetteflowbetweenparallelplanes 116 4.5.3 Poiseuille-typeflows 117 4.5.4 Oscillatingflowsinaviscousfluid 120 4.5.5 Parallelflowresultingfromahorizontaldensityvariation 124 4.5.6 CylindricalCouetteflow 125 4.6 Simpleone-dimensional,steadystateflowsofnon-Newtonianfluids 127 4.6.1 Steady-stateCouetteplaneflow 128 4.6.2 One-dimensionalflowbetweenfixedwalls 128 4.6.3 Velocityprofilesforsimplerheologicalbehavior 130 4.6.4 Flowofaviscoelasticfluidnearanoscillatingplane 132 4A Appendix-Representationoftheequationsoffluidmechanicsindifferentsystemsofcoordinates 134 4A.1 Representationofthestress-tensor,theequationofconservationofmassandtheNavier–Stokes equationsinCartesiancoordinates(x,y,z) 134 4A.2 Representationofthestress-tensor,theequationofconservationofmass,andtheNavier–Stokes equationsincylindricalcoordinates(r,ϕ,z) 134 4A.3 Representationofthestress-tensor,theequationofconservationofmass,andtheNavier–Stokes equationsinsphericalpolarcoordinates(r,θ,ϕ) 135 Exercises 136 5 ConservationLaws 138 5.1 Equationofconservationofmass 138 5.2 Conservationofmomentum 139 5.2.1 Thelocalequation 139 5.2.2 Theintegralexpressionofthelawofconservationofmomentum 139 5.3 Theconservationofkineticenergy;Bernoulli’sEquation 142 5.3.1 Theconservationofenergyforaflowingincompressiblefluidwithorwithoutviscosity 143 5.3.2 Bernoulli’sequationanditsapplications 146 5.3.3 ApplicationsofBernoulli’sequation 147 5.4 Applicationsofthelawsofconservationofenergyandmomentum 152 5.4.1 Jetincidentontoaplane 152 5.4.2 Exitjetfromanopeninginareservoir 154 5.4.3 Forceonthewallsofanaxiallysymmetricconduitofvaryingcross-section 157 5.4.4 Liquidsheetsofvaryingthickness:thehydraulicjump 158 Exercises 164 6 PotentialFlow 166 6.1 Introduction 166 6.2 Definitions,propertiesandexamplesofpotentialflow 167 6.2.1 Characteristicsandexamplesofvelocitypotentials 167 6.2.2 Uniquenessofthevelocitypotential 168 6.2.3 Velocitypotentialsforsimpleflowsandcombinationsofpotentialfunctions 170 6.2.4 Examplesofsimplepotentialflows 174 6.3 Forcesactingonanobstacleinpotentialflow 180 6.3.1 Two-dimensionalflows 181 6.3.2 Addedmasseffectsforathree-dimensionalbodyundergoingaccelerationinanidealfluid 184 6.4 Linearsurfacewavesonanidealfluid 187 6.4.1 Swell,ripplesandbreakingwaves 187 6.4.2 Trajectoriesoffluidparticlesduringthepassageofawave 191 6.4.3 Solitons 192 6.4.4 Anotherexampleofpotentialflowinthepresenceofaninterface:theTaylorbubble 193

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.