ebook img

Photonic Analog-to-Digital Conversion PDF

340 Pages·2001·15.15 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Photonic Analog-to-Digital Conversion

Springer Series in 81 OPTICAL SCIENCES founded by H.K. V. Lotsch Editor-in-Chief: W. T. Rhodes, Metz Editorial Board: T. Asakura, Sapporo K.-H. Brenner, Mannheim T. W. Hansch, Garching F. Krausz, Wien H. Weber, Berlin Springer-Verlag Berlin Heidelberg GmbH ONLINE LIBRARY Physics and Astronomy http://www.springer.de/phys/ Springer Series in OPTICAL SCIENCES The Springer Series in Optical Sciences, under the leadership of Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and Georgia Tech Lorraine, France, provides an expanding selection of research monographs in all major areas of optics: lasers and quantum optics, ultrafast phenomena, optical spectroscopy techniques, optoelectronics, information optics, applied laser tech nology, industrial applications, and other topics of contemporary interest. With this broad coverage of topics, the series is of use to all research scientists and engineers who need up-to-date reference books. The editors encourage prospective authors to correspond with them in advance of submitting a manu script. Submission of manuscripts should be made to the Editor-in-Chief or one of the Editors. See also http://www.springer.de/phys/books/optical_science/os.htm Editor-in-Chief William T. Rhodes Georgia Tech Lorraine 2-3, rue Marconi 57070 Metz, France Phone: +33 387 20 3922 Fax: +33 387 20 3940 E-mail: [email protected] URL: http://www.georgiatech-metz.fr http://users.ece.gatech.edu/-wrhodes Editorial Board Toshimitsu Asakura Ferenc Krausz Faculty of Engineering Institut fur Photonik Hokkai-Gakuen University Technische Universitat Wien 1-1, Minami-26, Nishi 11, Chuo-ku Gusshausstrasse 27/387 Sapporo, Hokkaido 064-0926, Japan 1040 Wien, Austria E-mail: [email protected] Phone: +43 (1) 58801 38711 (Special Editor for Optics in the Pacific Rim) Fax: +43 (1) 58801 38799 E-mail: [email protected] Karl-Heinz Brenner URL: http://info.tuwien.ac.at/photonikl Chair of Optoelectronics home/Krausz/CV.htm University of Mannheim Horst Weber B6,26 68131 Mannheim, Germany Optisches Institut Phone: +49 (621) 2923004 Technische Universitat Berlin Fax: +49 (621) 292 1605 Strasse des 17. Juni 135 E-mail: [email protected] 10623 Berlin, Germany URL: http://www.ti.uni-mannheim.de/-oe Phone: +49 (30) 314 23585 Fax: +49 (30) 314 27850 Theodor W. Hansch E-mail: [email protected] Max-Planck-Institut fUr Quantenoptik URL: http://www.physik.tu-berlin.de/institute/ Hans-Kopfermann-Strasse 1 OIlWeber/Webhome.htm 85748 Garching, Germany Phone: +49 (89) 21803211 or +49 (89) 32905 702 Fax: +49 (89) 32905 200 E-mail: [email protected] URL: http://www.mpq.mpg.de/-haensch Barry L. Shoop Photonic Analog-to-Digital Conversion With 259 Figures and 11 Tables , Springer Professor Barry L. Shoop Photonics Research Center and Department of Electrical Engineering and Computer Science United States Military Academy West Point, NY 10996, USA ISBN 978-3-642-07460-8 ISBN 978-3-540-44408-4 (eBook) DOI 10.1007/978-3-540-44408-4 Library of Congress Cataloging-in-Publication Data. Shoop, Barry, 1957-. Photonic analog-to-digital conver sion/Barry Shoop. p. cm. - (Springer series in optical sciences, ISSN 0342-4111; v. 81) Includes bibliographical references and index. I. Analog-to-digital converters. 2. Optoelectronic devices. 3. Optical devices. I. Title. II. Series. TK7887.6.S554 2001 621.36-dc21 00-069233 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. http://www.springer.de © Springer-Verlag Berlin Heidelberg 2001 Softcover reprint of the hardcover 1st edition 2001 Originally published by Springer-Verlag Berlin Heidelberg New York in 2001. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Data prepared by the author using a Springer TJiX macropackage Cover concept by eStudio Calamar Stein en using a background picture from The Optics Project. Courtesy of John T. Foley, Professor, Department of Physics and Astronomy, Mississippi State University, USA. Cover production: design & production GmbH, Heidelberg Printed on acid-free paper In Memory of Roy A. Shoop 1917 - 1999 Preface The purpose of this book, "Photonic Analog-to-Digital Conversion," is to provide a resource for researchers, engineers, and students interested in AjD conversion, in general, and specifically in the application of photonic tech nologies to the problem of AjD conversion. As a result of over 10 years of research in the area of oversampled photonic AjD conversion, the reader will also find several chapters dedicated to a detailed description of photonic based overs amp ling architectures. This book is a progress report on the past and present research involving photonic approaches to AjD conversion and a glimpse of several promising architectures and technologies. The development of novel high-speed, high-resolution AjD converter ar chitectures continues to be an active research area and one which continues to draw significant interest in both the electronics and photonics technology fields. At the time of writing, there has been renewed interest in photonic based AjD conversion techniques for high-speed and high-resolution AjD conversion; therefore, new approaches and architectures are currently under development which could not be included in this text. This book is the result of many years of individual and collective re search with contributions from many individuals. I am deeply indebted to the many people who have made important contributions to the research reported in this monograph. In particular, I am grateful to Joseph W. Good man of Stanford University, under whose guidance I began my investigation of photonic-based AjD conversion. I am thankful to Robert Gray and Bruce Wooley, also of Stanford University, for many helpful discussions on the sub ject of quantization noise spectra and the operation and implementation of electronic L'L1 converters, respectively. Since joining the Photonics Research Center at the United States Military Academy at West Point, a number of faculty members and students have par ticipated in and made significant contributions to the research reported here. First and foremost is Eugene K. Ressler who has been my closest collaborator on the digital image halft oning research project. Many of the mathematical results on the error diffusion neural network are attributed to his steadfast and relentless desire for mathematical closure. Robert W. Sadowski, Glen P. Dudevoir, and Andre H. Sayles contributed to the electronic circuit design and layout of the CMOS-SEED smart pixel implementations described in VIn Preface Chap. 8. The PSpice simulation of the entire 5 x 5 error diffusion neural network, also discussed in Chap. 8, was performed by Robert W. Sadowski. Dirk A. Hall, James J. Raftery, Jr., and Timothy J. Talty participated in the experimental characterization of the 5 x 5 CMOS-SEED smart pixel ar ray. James R. Loy assisted in the layout of the 3 x 3 OPTOCHIP neural array. The diffractive optical filter also described in Chap. 8 was designed by Joseph N. Mait of the Army Research Laboratory in Adelphi, MD and was experimentally characterized by Gregory R. Kilby. Jean R. S. Blair, Thomas D. Wagner, and David A. Nash worked closely with me on extensions of the error diffusion neural network to color applications and partitioning schemes to reduce computational complexity and improve processing speed of the halft oning process. Daniel M. Litynski was involved in a number of early discussions related to extensions of error diffusion to high-resolution AID conversion techniques. Pankaj K. Das has been a close collaborator on many of the concepts of high-resolution and high-speed photonic-based AID con version. I also want to thank both Panakj K. Das from the University of California at San Diego and Jonathan C. Twichell from MIT Lincoln Labo ratory for constructive comments on the draft manuscript. Finally, and most of all, I owe my family a great debt of gratitude. To my wife, Linda, whose continuous support and encouragement enabled me to confront the challenges associated with research. To my son Brandon and daughter Aubrey who gave me a new perspective on life and taught me the true meaning of family. And finally to my parents, Roy and Ruth Shoop, who instilled in me from an early age the importance of God, family, and education. West Point, New York, Barry L. Shoop December 2000 Contents 1. Introduction.............................................. 1 1.1 The Role of AID Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Key Technological Challenges. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Motivation for Photonic AID Approaches ................. 3 1.4 Organization of this Book ............................... 4 2. Performance Characteristics of Analog-to-Digital Converters. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 AID Converter Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Sampling and Conversion Rate Characteristics .... . . . . . . . . . 9 2.2.1 Sampling Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Conversion Rate ................................. 10 2.3 Performance Measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 2.3.1 Resolution....................................... 11 2.3.2 Dynamic Range, SQNR, and SNR Performance Measures. . . . . . . . . . . . . . . . . . .. 14 2.3.3 Spur-Free Dynamic Range. . . . . . . . . . . . . . . . . . . . . . . .. 17 2.4 Performance Degradations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 2.4.1 Two-Tone Intermodulation Distortion. . . . . . . . . . . . . .. 18 2.4.2 Differential Nonlinearity. . . . . . . . . . . . . . . . . . . . . . . . . .. 19 2.4.3 Integral Nonlinearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 2.4.4 Comparator Hysteresis. . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 2.4.5 Thermal Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22 2.4.6 Aperture Jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 2.4.7 Comparator Ambiguity ........................... 24 2.4.8 Observations..................................... 26 Summary .................................................. 28 3. Approaches to Analog-to-Digital Conversion. . . . . . . . . . . . .. 29 3.1 AID Converter Coding Schemes. . . . . . . . . . . . . . . . . . . . . . . . .. 29 3.1.1 Thermometer Coding Scheme. . . . . . . . . . . . . . . . . . . . .. 29 3.1.2 Gray Code Coding Scheme. . . . . . . . . . . . . . . . . . . . . . .. 31 3.1.3 Circular Coding Scheme. . . . . . . . . . . . . . . . . . . . . . . . . .. 31 3.2 Nyquist-Rate Converter Architectures. . . . . . . . . . . . . . . . . . . .. 32 X Contents 3.2.1 Fully Parallel or Flash AID Conversion ............. 32 3.2.2 Subranging AID Conversion. . . . . . . . . . . . . . . . . . . . . .. 33 3.2.3 Folding Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 3.2.4 Other Parallel Architectures . . . . . . . . . . . . . . . . . . . . . .. 36 3.2.5 Neural Network Approach to AID Conversion. . . . . . .. 39 3.2.6 Full-Search AID Conversion . . . . . . . . . . . . . . . . . . . . . .. 43 3.2.7 Successive Approximation AID Conversion . . . . . . . . .. 43 3.3 Oversampled AID Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . .. 44 3.3.1 The Modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46 3.3.2 Operation....................................... 49 3.3.3 The Digital Postprocessor . . . . . . . . . . . . . . . . . . . . . . . .. 60 3.3.4 Oversampled AID Performance .... . . . . . . . . . . . . . . .. 69 3.4 Parallel Oversampling AID Conversion. . . . . . . . . . . . . . . . . . .. 79 Summary .................................................. 80 4. Photonic Devices for Analog-to-Digital Conversion. . . . . . . . . . . . . . . . . . . . . . . . .. 83 4.1 Mach-Zehnder Interferometers. . . . . . . . . . . . . . . . . . . . . . . . . .. 83 4.2 Optical Waveguide Switches ............................. 89 4.2.1 Directional Coupler Waveguide Switches ............ 90 4.2.2 Reversed l1(3 Directional Coupler. . . . . . . . . . . . . . . . . .. 92 4.2.3 Digital Optical Waveguide Switches. . . . . . . . . . . . . . . .. 93 4.3 Acousto-Optic Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 94 4.4 Multiple Quantum Well Devices .......................... 10l 4.4.1 Optical Bistability ................................ 105 4.4.2 Optical Subtraction ............................... 106 4.4.3 Switching Speed and Energy Requirements .......... 108 4.5 Smart Pixel Technology ................................. 110 4.5.1 Monolithic Integration ............................ 110 4.5.2 Direct Epitaxy ................................... 114 4.5.3 Hybrid Integration ............................... 115 Summary .................................................. 122 5. Nyquist-Rate Photonic Analog-to-Digital Conversion ..... 123 5.1 Electro-Optic AID Conversion Based on a Mach-Zehnder Interferometer .................. 123 5.2 Optical Folding-Flash AID Converter ..................... 127 5.3 Matrix-Multiplication and Beam Deflection ................ 129 5.4 Other Approaches to Photonic AID Conversion ............ 131 Summary .................................................. 131 6. Oversampled Photonic Analog-to-Digital Conversion ...... 133 6.1 Oversampling Photonic AID Conversion ................... 133 6.2 Optical Oversampled Modulators ......................... 134 6.2.1 The Interferometric Modulator ..................... 135 Contents XI 6.2.2 The Noninterferometric Modulator 138 6.3 The Digital Postprocessor ............................... 140 6.3.1 Electronic Postprocessing .......................... 140 6.3.2 Optoelectronic Postprocessing ...................... 141 6.3.3 Observations ..................................... 141 6.4 Performance Analysis ................................... 142 6.4.1 Linear Arithmetic Errors .......................... 142 6.4.2 Quantization Noise Spectra ........................ 143 6.4.3 Cascade Error Tolerances .......................... 151 6.5 Experimental Proof-of-Concept Photonic Modulator Demonstration ....................... 157 6.5.1 Noninterferometric Optical Subtraction ............. 158 6.5.2 Experimental Photonic First-Order Oversampled lVIodulator ........................... 162 Summary .................................................. 166 7. Low Resolution, Two-Dimensional Analog-to-Digital Conversion: Digital Image Halft oning ..................... 169 7.1 Introduction ........................................... 169 7.2 Approaches to Halft oning ................................ 170 7.3 The Error Diffusion Algorithm ........................... 171 7.4 Neural Network Formalism .............................. 175 7.4.1 The Hopfield-Type Neural Network ................. 175 7.4.2 Observations ..................................... 180 7.5 The Error Diffusion Neural Network ...................... 181 7.5.1 The Error Diffusion Filter ......................... 186 7.5.2 Observations ..................................... 189 7.6 Quantitative Performance Metrics ........................ 191 7.6.1 Power Spectrum Estimation ....................... 193 7.6.2 Radially Averaged Power Spectra and Anisotropy .... 195 7.7 Performance Analysis ................................... 198 7.7.1 Floyd-Steinberg Performance Analysis .............. 198 7.7.2 Symmetric Jarvis Performance Analysis . . . . . . . . . . . . . 202 7.7.3 Error Diffusion Neural Network Performance Analysis ......................................... 202 7.8 Extensions to Color ..................................... 211 Summary .................................................. 212 8. A Photonic-Based Error Diffusion Neural Network .......................................... 215 8.1 First-Generatioll CMOS-SEED Error Diffusion Neural Array ............................. 216 8.2 Second-Generation CMOS-SEED Error Diffusion Neural Array ............................. 219 8.2.1 Detailed Circuit Description ....................... 225

Description:
Photonic-based A/D conversion has received and continues to receive considerable attention as an alternative approach to providing enhanced resolution and speed in high-performance applications. Some of the potential advantages of using pho- tonic technologies are high-speed clocking, broadband sam-
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.