Table Of ContentPhase Change
Material-Based
Heat Sinks
A Multi-Objective Perspective
Phase Change
Material-Based
Heat Sinks
A Multi-Objective Perspective
Srikanth Rangarajan
C. Balaji
CRCPress
Taylor&FrancisGroup
6000BrokenSoundParkwayNW,Suite300
BocaRaton,FL33487-2742
(cid:13)c 2020byTaylor&FrancisGroup,LLC
CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness
NoclaimtooriginalU.S.Governmentworks
Printedonacid-freepaper
InternationalStandardBookNumber-13:978-0-367-34403-0(Hardback)
Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Rea-
sonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the conse-
quences of their use. The authors and publishers have attempted to trace the copyright
holdersofallmaterialreproducedinthispublicationandapologizetocopyrightholdersif
permissiontopublishinthisformhasnotbeenobtained.Ifanycopyrightmaterialhasnot
beenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuturereprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means,nowknownorhereafterinvented,includingphotocopying,microfilming,andrecord-
ing,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthe
publishers.
For permission to photocopy or use material electronically from this work, please access
www.copyright.com(http://www.copyright.com/)orcontacttheCopyrightClearanceCen-
ter, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-
for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system
ofpaymenthasbeenarranged.
Trademark Notice:Productorcorporatenamesmaybetrademarksorregisteredtrade-
marks,andareusedonlyforidentificationandexplanationwithoutintenttoinfringe.
Library of Congress Control Number: 2019951619
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
To my parents and my teachers
Srikanth Rangarajan
To all my teachers and students
C. Balaji
Contents
Preface xiii
Symbols xvii
Notation xix
Acknowledgments xxi
Authors xxiii
1 INTRODUCTION 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Multi-objective optimization . . . . . . . . . . . . . . 8
1.2 Organization of the book . . . . . . . . . . . . . . . . . . . . 9
1.3 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 REVIEW OF LITERATURE 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Experimental investigations on PCM-based composite
heat sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Numerical studies on PCM-based finned heat sinks . . . . . 14
2.4 Optimization studies on PCM-based finned heat sinks . . . . 17
2.5 Thermosyphon assisted melting of PCM . . . . . . . . . . . . 20
2.6 Scope and objectives of the present study . . . . . . . . . . . 21
2.7 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 CHARACTERIZATION OF PCM AND TCEs 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Selection of phase change material . . . . . . . . . . . . . . . 31
3.2.1 Sensible and latent heat time . . . . . . . . . . . . . . 33
3.3 Thermal conductivity enhancer (TCE) . . . . . . . . . . . . 33
3.4 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4 EXPERIMENTAL SETUP AND INSTRUMENTATION 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.1 Heat sink design . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Thermocouple positions . . . . . . . . . . . . . . . . . 38
vii
viii Contents
4.2 Uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Instrumentation for experimentation . . . . . . . . . . . . . . 40
4.3.1 Data acquisition system . . . . . . . . . . . . . . . . . 40
4.3.2 Thermocouples . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3 Digital multimeter . . . . . . . . . . . . . . . . . . . . 42
4.3.4 Constant temperature bath . . . . . . . . . . . . . . . 43
4.3.5 DC power source . . . . . . . . . . . . . . . . . . . . . 43
4.3.6 Experimental procedure . . . . . . . . . . . . . . . . . 43
4.4 Instrumentation for wireless temperature experiments on
rotating heat sinks . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.1 Wireless temperature measurement module . . . . . . 45
4.4.2 Max31855 amplifier . . . . . . . . . . . . . . . . . . . 45
4.4.3 CIC magnetic base angle finder . . . . . . . . . . . . . 46
4.4.4 Accelerometer. . . . . . . . . . . . . . . . . . . . . . . 46
4.4.5 Fan with heat sink . . . . . . . . . . . . . . . . . . . . 47
4.4.6 Tachometer . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.7 Lithium polymer battery . . . . . . . . . . . . . . . . 47
4.4.8 Arduino fio . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.9 Calibration bath for wireless temperature circuit . . . 50
4.4.10 Testing of circuit . . . . . . . . . . . . . . . . . . . . . 51
4.4.11 Assembled wireless temperature integrated power
circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5 EXPERIMENTAL INVESTIGATIONS ON 72 PIN FIN
HEAT SINK WITH DISCRETE HEATING 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Experimental setup and procedure . . . . . . . . . . . . . . . 54
5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 54
5.3.1 Dimensionless number definition . . . . . . . . . . . . 54
5.3.2 Effect of uniform heating on the thermal
performance of heat sink. . . . . . . . . . . . . . . . . 56
5.3.3 Enhancement in the thermal performance
due to PCM. . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.4 Effect of diagonal heating on the thermal
performance of heat sink. . . . . . . . . . . . . . . . . 58
5.3.5 Effect of non-uniform heating on the thermal
performance of heat sink. . . . . . . . . . . . . . . . . 58
5.3.6 Thermal performance of heat sink without PCM . . . 59
5.3.7 Effect of discrete heat source on time taken to reach
set point temperature . . . . . . . . . . . . . . . . . . 60
5.4 Heat transfer correlations . . . . . . . . . . . . . . . . . . . . 64
5.5 Engineering usefulness of the correlation . . . . . . . . . . . 65
5.5.1 Performance of diagonal and planar heating
at the base . . . . . . . . . . . . . . . . . . . . . . . . 67
Contents ix
5.5.2 Comparison of uniform heating vs. non-uniform
heating at the base . . . . . . . . . . . . . . . . . . . . 67
5.6 Heat loss during experiments . . . . . . . . . . . . . . . . . . 69
5.7 Sensible and latent heat accumulation for pin fin heat sink
subject to discrete non-uniform heating . . . . . . . . . . . . 73
5.7.1 Numerical model . . . . . . . . . . . . . . . . . . . . . 73
5.7.2 Governing equations . . . . . . . . . . . . . . . . . . . 74
5.7.3 Uniform heating . . . . . . . . . . . . . . . . . . . . . 79
5.7.4 Non-uniform heating . . . . . . . . . . . . . . . . . . . 80
5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.9 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6 MULTI-OBJECTIVE OPTIMIZATION ALGORITHMS
FOR 72 PIN FIN HEAT SINKS 89
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Application of multi-objective optimization
algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Experimental results for 72 pin heat sinks with
discrete heating . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4 Artificial neural network . . . . . . . . . . . . . . . . . . . . 91
6.5 Optimization of discrete heat input of 72 pin fin heat sinks . 94
6.5.1 Latin hypercube sampling . . . . . . . . . . . . . . . . 96
6.6 Goal programming . . . . . . . . . . . . . . . . . . . . . . . . 97
6.6.1 Problem formulation . . . . . . . . . . . . . . . . . . . 98
6.7 Results obtained with non-dominated sorting
genetic algorithm—NSGA-II . . . . . . . . . . . . . . . . . . 100
6.8 Particle swarm optimization . . . . . . . . . . . . . . . . . . 103
6.9 Brute-Force search . . . . . . . . . . . . . . . . . . . . . . . . 103
6.10 Clustering of Pareto solutions . . . . . . . . . . . . . . . . . 104
6.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.13 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7 MULTI-OBJECTIVE GEOMETRIC OPTIMIZATION
OF A PCM-BASED MATRIX TYPE COMPOSITE
HEAT SINK 113
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 114
7.2.1 Uncertainty analysis . . . . . . . . . . . . . . . . . . . 116
7.3 Charging and discharging cycles . . . . . . . . . . . . . . . . 116
7.4 Baseline comparison of heat sink with PCM to that of
heat sink without PCM . . . . . . . . . . . . . . . . . . . . . 117
7.5 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.5.1 Geometry and mesh . . . . . . . . . . . . . . . . . . . 124
7.5.2 Grid independence studies . . . . . . . . . . . . . . . 124