Large-Scale Machine Learning in the Earth Sciences Chapman & Hall/CRC Data Mining and Knowledge Discovery Series Series Editor: Vipin Kumar UniversityofMinnesota DepartmentofComputerScienceandEngineering Minneapolis,Minnesota,U.S.A. AIMSANDSCOPE Thisseriesaimstocapturenewdevelopmentsandapplicationsindataminingandknowledge discovery,whilesummarizingthecomputationaltoolsandtechniquesusefulindataanalysis. Thisseriesencouragestheintegrationofmathematical,statistical,andcomputationalmethods andtechniquesthroughthepublicationofabroadrangeoftextbooks,referenceworks,and handbooks.Theinclusionofconcreteexamplesandapplicationsishighlyencouraged.The scopeoftheseriesincludes,butisnotlimitedto,titlesintheareasofdataminingand knowledgediscoverymethodsandapplications,modeling,algorithms,theoryandfoundations, dataandknowledgevisualization,dataminingsystemsandtools,andprivacyandsecurity issues. PUBLISHEDTITLES AcceleratingDiscovery:MiningUnstructuredInformationforHypothesisGeneration ScottSpangler AdvancesinMachineLearningandDataMiningforAstronomy MichaelJ.Way,JeffreyD.Scargle,KamalM.Ali,andAshokN.Srivastava BiologicalDataMining JakeY.ChenandStefanoLonardi ComputationalBusinessAnalytics SubrataDas ComputationalIntelligentDataAnalysisforSustainableDevelopment TingYu,NiteshV.Chawla,andSimeonSimoff ComputationalMethodsofFeatureSelection HuanLiuandHiroshiMotoda ConstrainedClustering:AdvancesinAlgorithms,Theory,andApplications SugatoBasu,IanDavidson,andKiriL.Wagstaff ContrastDataMining:Concepts,Algorithms,andApplications GuozhuDongandJamesBailey DataClassification:AlgorithmsandApplications CharuC.Aggarawal DataClustering:AlgorithmsandApplications CharuC.AggarawalandChandanK.Reddy DataClusteringinC++:AnObject-OrientedApproach GuojunGan DataMining:ATutorial-BasedPrimer,SecondEdition RichardJ.Roiger DataMiningforDesignandMarketing YukioOhsawaandKatsutoshiYada DataMiningwithR:LearningwithCaseStudies,SecondEdition LuísTorgo DataScienceandAnalyticswithPython JesusRogel-Salazar EventMining:AlgorithmsandApplications TaoLi FoundationsofPredictiveAnalytics JamesWuandStephenCoggeshall GeographicDataMiningandKnowledgeDiscovery,SecondEdition HarveyJ.MillerandJiaweiHan Graph-BasedSocialMediaAnalysis IoannisPitas HandbookofEducationalDataMining CristóbalRomero,SebastianVentura,MykolaPechenizkiy,andRyanS.J.d.Baker HealthcareDataAnalytics ChandanK.ReddyandCharuC.Aggarwal InformationDiscoveryonElectronicHealthRecords VagelisHristidis IntelligentTechnologiesforWebApplications PritiSrinivasSajjaandRajendraAkerkar IntroductiontoPrivacy-PreservingDataPublishing:ConceptsandTechniques BenjaminC.M.Fung,KeWang,AdaWai-CheeFu,andPhilipS.Yu KnowledgeDiscoveryforCounterterrorismandLawEnforcement DavidSkillicorn KnowledgeDiscoveryfromDataStreams JoãoGama Large-ScaleMachineLearninginTheEarthSciences AshokN.Srivastava,RamakrishnaNemani,andKarstenSteinhaeuser MachineLearningandKnowledgeDiscoveryforEngineeringSystemsHealthManagement AshokN.SrivastavaandJiaweiHan MiningSoftwareSpecifications:MethodologiesandApplications DavidLo,Siau-ChengKhoo,JiaweiHan,andChaoLiu MultimediaDataMining:ASystematicIntroductiontoConceptsandTheory ZhongfeiZhangandRuofeiZhang MusicDataMining TaoLi,MitsunoriOgihara,andGeorgeTzanetakis NextGenerationofDataMining HillolKargupta,JiaweiHan,PhilipS.Yu,RajeevMotwani,andVipinKumar Rapidminer:DataMiningUseCasesandBusinessAnalyticsApplications MarkusHofmannandRalfKlinkenberg RelationalDataClustering:Models,Algorithms,andApplications BoLong,ZhongfeiZhang,andPhilipS.Yu Service-OrientedDistributedKnowledgeDiscovery DomenicoTaliaandPaoloTrunfio SpectralFeatureSelectionForDataMining ZhengAlanZhaoandHuanLiu StatisticalDataMiningUsingSASApplications,SecondEdition GeorgeFernandez SupportVectorMachines:OptimizationBasedTheory,Algorithms,andExtensions NaiyangDeng,YingjieTian,andChunhuaZhang TemporalDataMining TheophanoMitsa TextMining:Classification,Clustering,andApplications AshokN.SrivastavaandMehranSahami TextMiningandVisualization:CaseStudiesUsingOpen-SourceTools MarkusHofmannandAndrewChisholm TheTopTenAlgorithmsinDataMining XindongWuandVipinKumar UnderstandingComplexDatasets:DataMiningwithMatrixDecompositions DavidSkillicorn Large-Scale Machine Learning in the Earth Sciences Editedby Ashok N. Srivastava Ramakrishna Nemani Karsten Steinhaeuser MATLABⓇ is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracyofthetextorexercisesinthisbook.Thisbook’suseordiscussionofMATLABⓇsoftwareorrelatedproductsdoesnot constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLABⓇsoftware. CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742 ©2017byTaylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness NoclaimtooriginalU.S.Governmentworks Printedonacid-freepaper InternationalStandardBookNumber-13:978-1-4987-0387-1(Hardback) Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Reasonableeffortshavebeenmadeto publishreliabledataandinformation,buttheauthorandpublishercannotassumeresponsibilityforthevalidityofallmaterials ortheconsequencesoftheiruse.Theauthorsandpublishershaveattemptedtotracethecopyrightholdersofallmaterial reproducedinthispublicationandapologizetocopyrightholdersifpermissiontopublishinthisformhasnotbeenobtained.If anycopyrightmaterialhasnotbeenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuturereprint. ExceptaspermittedunderU.S.CopyrightLaw,nopartofthisbookmaybereprinted,reproduced,transmitted,orutilizedinany formbyanyelectronic,mechanical,orothermeans,nowknownorhereafterinvented,includingphotocopying,microfilming, andrecording,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthepublishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/)orcontacttheCopyrightClearanceCenter,Inc.(CCC),222RosewoodDrive,Danvers,MA01923, 978-750-8400.CCCisanot-for-profitorganizationthatprovideslicensesandregistrationforavarietyofusers.Fororganizations thathavebeengrantedaphotocopylicensebytheCCC,aseparatesystemofpaymenthasbeenarranged. TrademarkNotice:Productorcorporatenamesmaybetrademarksorregisteredtrademarks,andareusedonlyforidentifica- tionandexplanationwithoutintenttoinfringe. LibraryofCongressCataloging-in-PublicationData Names:Srivastava,AshokN.(AshokNarain),1969-editor.|Nemani, Ramakrishna,editor.|Steinhaeuser,Karsten,editor. Title:Large-scalemachinelearningintheearthsciences/[editedby]Ashok N.Srivastava,Dr.RamakrishnaNemani,KarstenSteinhaeuser. Description:BocaRaton:Taylor&Francis,2017.|Series:Chapman& Hall/CRCdatamining&knowledgediscoveryseries;42|“ACRCtitle, partoftheTaylor&Francisimprint,amemberoftheTaylor&Francis Group,theacademicdivisionofT&FInformaplc.” Identifiers:LCCN2017006160|ISBN9781498703871(hardback:alk.paper) Subjects:LCSH:Earthsciences–Computernetworkresources.|Earth sciences–Dataprocessing. Classification:LCCQE48.87.L372017|DDC550.285/6312–dc23 LCrecordavailableathttps://lccn.loc.gov/2017006160 VisittheTaylor&FrancisWebsiteat http://www.taylorandfrancis.com andtheCRCPressWebsiteat http://www.crcpress.com Contents Foreword.............................................................................................................. ix Editors................................................................................................................. xi Contributors........................................................................................................xiii Introduction .........................................................................................................xv 1 NetworkSciencePerspectivesonEngineeringAdaptationtoClimateChangeand WeatherExtremes ........................................................................................... 1 UditBhatiaandAuroopR.Ganguly 2 StructuredEstimationinHighDimensions:ApplicationsinClimate.....................13 AndréRGoncalves,ArindamBanerjee,VidyashankarSivakumar,andSoumyadeepChatterjee 3 SpatiotemporalGlobalClimateModelTracking .................................................33 ScottMcQuadeandClaireMonteleoni 4 StatisticalDownscalinginClimatewithState-of-the-ArtScalableMachine Learning........................................................................................................55 ThomasVandal,UditBhatia,andAuroopR.Ganguly 5 Large-ScaleMachineLearningforSpeciesDistributions......................................73 ReidA.Johnson,JasonD.K.Dzurisin,andNiteshV.Chawla 6 UsingLarge-ScaleMachineLearningtoImproveOurUnderstandingofthe FormationofTornadoes..................................................................................95 AmyMcGovern,CoreyPotvin,andRodgerA.Brown 7 DeepLearningforVeryHigh-ResolutionImageryClassification........................113 SangramGanguly,SaikatBasu,RamakrishnaNemani,SupratikMukhopadhyay,Andrew Michaelis,PetrVotava,CristinaMilesi,andUttamKumar vii viii Contents 8 UnmixingAlgorithms:AReviewofTechniquesforSpectralDetectionand ClassificationofLandCoverfromMixedPixelsonNASAEarthExchange ..........131 UttamKumar,CristinaMilesi,S.KumarRaja,RamakrishnaNemani,SangramGanguly, WeileWang,PetrVotava,AndrewMichaelis,andSaikatBasu 9 SemanticInteroperabilityofLong-TailGeoscienceResourcesovertheWeb.........175 MostafaM.Elag,PraveenKumar,LuigiMarini,ScottD.Peckham,andRuiLiu Index ......................................................................................................201 Foreword The climate and Earth sciences have recently undergone a rapid transformation from a data-poor to a data-richenvironment.Inparticular,massiveamountsofclimateandecosystemdataarenowavailable fromsatelliteandground-basedsensors,andphysics-basedclimatemodelsimulations.Theseinformation- richdatasetsofferhugepotentialformonitoring,understanding,andpredictingthebehavioroftheEarth’s ecosystemandforadvancingthescienceofglobalchange. Whilelarge-scalemachinelearninganddatamininghavegreatlyimpactedarangeofcommercialappli- cations, their use in the field of Earth sciences is still in the early stages. This book, edited by Ashok Srivastava,RamakrishnaNemani,andKarstenSteinhaeuser,servesasanoutstandingresourceforany- oneinterestedintheopportunitiesandchallengesforthemachinelearningcommunityinanalyzingthese datasetstoanswerquestionsofurgentsocietalinterest. ThisbookisacompilationofrecentresearchintheapplicationofmachinelearninginthefieldofEarth sciences.Itdiscussesanumberofapplicationsthatexemplifysomeofthemostimportantquestionsfaced bytheclimateandecosystemscientiststodayandtherolethedataminingcommunitycanplayinanswer- ingthem.Chaptersarewrittenbyexpertswhoareworkingattheintersectionofthetwofields.Topics covered include modeling of weather and climate extremes, evaluation of climate models, and the use of remote sensing data to quantify land-cover change dynamics. Collectively, they provide an excellent cross-sectionofresearchbeingdoneinthisemergingfieldofgreatsocietalimportance. Ihopethatthisbookwillinspiremorecomputerscientiststofocusonenvironmentalapplications,and Earthscientiststoseekcollaborationswithresearchersinmachinelearninganddataminingtoadvance thefrontiersinEarthsciences. VipinKumar,PhD DepartmentofComputerScienceandEngineering UniversityofMinnesota Minneapolis,MN ix
Description: