ebook img

Perceptual Organization for Artificial Vision Systems PDF

350 Pages·2000·18.269 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Perceptual Organization for Artificial Vision Systems

PERCEPTUAL ORGANIZATION FOR ARTIFICIAL VISION SYSTEMS THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE PERCEPTUAL ORGANIZATION FOR ARTIFICIAL VISION SYSTEMS Edited by KIML. BOYER The Ohio State University, Columbus SUDEEPSARKAR University of South Florida, Tampa ~. " Springer Science+Business Media, LLC Library of Congress Cataloging-in-Publication Perceptual organization for artificial vision systems 1 edited by Kim L. Boyer, Sudeep Sarkar. p. cm. --(Kluwer international series in engineering and computer science ; SECS 546) Includes bibliographicaI references and index. ISBN 978-1-4613-6986-8 ISBN 978-1-4615-4413-5 (eBook) DOI 10.1007/978-1-4615-4413-5 I. Computer vision. 2. VisuaI perception. 3. üptical pattern recognition. I. Boyer, Kim L. 11. Sarkar, Sudeep. III. Series. TA1634 .P47 2000 006.3'7--dc21 00-022754 Copyright 2000 by Springer Science+Business Media New York @ Originally published by Kluwer Academic Publishers, New York in 2000 Softcover reprint of the hardcover 1s t edition 2000 All rights reserved. No part of this publication may be reproduced, stored in a retrievaI system or transmitted in any form or by any means, mechanicaI, photo-copying, recording, or otherwise, without the prior written permission of the publisher, Springer Science+Business Media, LLC. Printed on acid-ji-ee paper. Contents ContributingAuthors xi 1 Introduction Kim L. Boyer, SudeepSarkar 1. Introduction 1 2. TheBreakoutReports 4 3. ASnapshot: IssuesfromtheFloor 7 4. Research Contributions: Perceptual Psychology meets Computer Vision 9 5. ConclusionsandRecommendations 11 PartI FocusedDeliberations 2 PrinciplesandMethods 17 DavidJacobs, JitendraMalik, RamNevatia 1. Introduction 17 2. Goalsofperceptualorganization 18 3. Stateofthe art 20 4. Futuredirections 22 3 LearningandPerceptualOrganization 29 EricSaund, JonasAugust, JoachimBuhmann, DanielCrevier, GreetFrederix, DannyRoobaert 1. Introduction 29 2. Whatis thereto learninPO? 30 3. CommonPerceptualOrganizationEngine 30 4. TrainingData 31 5. Why islearningimportant? 32 4 SpatiotemporalGrouping 33 Kim L. Boyer, DanielFagerstrom, MichaelKubovy, PeterJohansen, SudeepSarkar 1. Introduction 33 2. ThreeBasicParadigms 34 3. TheQuestions 36 4. ConclusionsandRecommendations 37 vi PERCEPTUALORGANIZATION PartII Discoursesin Human and MachineVision 5 Gestalt: FromPhenomenatoLaws 41 Michael Kubovy, SergeiGepshtein 1. Introduction 41 2. GroupingbyProximityinSpace 43 3. GroupingbyProximityandSimilarity 49 4. GroupingbyProximityin Space-Time 54 6 ConvexityinPerceptualCompletion 73 vv. ZiliLiu, David Jacobs, RonenBasri 1. Introduction 73 2. Computationaltheories 74 3. Psychologicaltheories 75 4. Theconvexitytheory 75 5. Groupinganddepthdiscrimination 77 6. Experiment1: 79 7. Experiment2 83 8. Discussion 87 7 AGestaltModelofSpatialPerception 91 StevenLehar 1. Introduction 92 2. TheGestaltPropertiesofPerception 94 3. TheComputationalMechanismofPerception 99 4. AGestaltBubbleModel 101 5. BrainAnchoring 115 6. Conclusion 116 8 WhatMakes ViewpointInvariantPropertiesPerceptuallySalient? 121 DavidJacobs 1. Introduction 121 2. ViewpointInvarianceinComputationalGrouping 122 3. ViewpointInvarianceinPoints 123 4. OtherGestaltproperties 131 5. Discussion: WhyMinimalFeatures? 132 9 ContourandTextureAnalysisforImageSegmentation 139 JitendraMalik, SergeBelongie, ThomasLeung, Jianbo Shi 1. Introduction 139 2. Filters,CompositeEdgels,andTextons 145 3. TheNormalizedCutFramework 153 4. DefiningtheWeights 154 5. ComputingtheSegmentation 161 6. Results 165 Contents vii 10 PerceptualOrganizationforGenericObjectDescription 173 R. Nevatia 1. Introduction 173 2. TheRoleofPerceptualOrganization 174 3. SaliencyofFeatures 176 4. An ApproachtoPerceptualOrganization 177 5. SomeSystemRealizations 179 6. CombiningEvidence,UncertaintyReasoningandMachineLearning 185 7. Conclusions 187 11 TowardRicherLabelsforVisualStructure 191 EricSaund 1. Introduction 191 2. TheStrengthofWeakModels 192 3. PerceptualOrganizationinDocumentImages 194 4. PerceptualOrganizationinPosterizedScenes 201 5. Conclusion 210 12 TensorVoting 215 Chi-KeungTang, Mi-SuenLee, GerardMedioni 1. Introduction 215 2. Previouswork 216 3. Salientinferenceengineoverview 218 4. Tensorrepresentation 219 5. Tensorcommunication 222 6. Featureextraction 225 7. Complexity 227 8. Results in2-D 227 9. Results in3-D 230 10. Conclusion 234 11. Softwaresystems 235 13 Anobservationonsaliency 239 MichaelLindenbaum,AlexanderBerengolts 1. Introduction 239 2. ProbabilisticSaliency 241 3. Theprobabilisticsaliencyoptimizationprocess 242 4. Implementation 245 5. Conclusion 246 14 ClosedCurvesin theAnalysisandSegmentationofImages 249 K. K. Thornber, L. R. Williams 1. Motivation 249 2. Theory 250 3. Results 258 4. Conclusion 262 viii PERCEPTUALORGANIZATION 15 Thecurveindicatorrandomfield: Curveorganizationviaedgecorrelation 265 JonasAugust. Steven W Zucker 1. Introduction 265 2. OverviewofOurProbabilisticModelforCurveOrganization 268 3. TheUnderlyingCurveFieldModel 268 4. TheOrientedWienerFilter 272 5. ValidatingtheEdgeCorrelationAssumption 276 6. Summary 286 16 EulerSpiralforShapeCompletion 289 BenjaminB. Kimia, /lana Frankel, Ana-MariaPopescu 1. Introduction 290 2. Euler'sSpiral 296 3. Euler'sSpiralforBoundaryModelingand GapCompletion 299 4. BiarcConstructionandInterpolation 300 5. Examples 304 6. SummaryandDiscussion 305 17 BayesianExtractionofCollinearSegmentChainsfrom DigitalImaJ5e.\ 311 DanielCrevier 1. Introduction 311 2. EdgeDetectionand Linking 313 3. DeviationMeasures 313 4. UnderlyingAccidentalDistributions 314 5. PriorAccidentalDensitiesofDeviationMeasures 315 6. ExtractionofthePriorProbabilityofNon-accidentalJunctions 316 7. ExtractionofNon AccidentalJunctions 317 8. ExtractionofCandidateChains 317 9. ValidationofChains 318 10. IterativeProcedure 319 11. ExamplesandConclusion 319 18 ObjectDetectionbyMultiprimitivePreattentivePerceptualOrganization 325 Pascal Vasseur, ElMustaphaMouaddib, Claude Pegard, ArnaudDupuis 1. Introduction 326 2. PreviousWork 328 3. TheMulti-primitivePre-attentiveApproach 330 4. ExperimentalResults 339 5. Conclusion 343 Index 347 This bookisdedicatedtothe mysteryofperception Contributing Authors Jonas August,Yale University [email protected] Ronen Basri, TheWeizmannInstituteofScience, Israel [email protected] AlexanderBerengolts, Technion, Israel SergeBelongie, University ofCalifornia, Berkeley [email protected] KimL. Boyer, DepartmentofElectricalEngineering TheOhio StateUniversity, Columbus, Ohio [email protected] Joachim Buhmann, UniversitatBonn Daniel Crevier, OphthalmosSystems Inc., Montreal, [email protected] Arnaud Dupuis, G.R.A.C.S.Y., France IlanaFrankel, BrownUniversity GreetFrederix, Katholieke UniversiteitLeuven [email protected] Sergei Gepshtein, University ofVirginia, [email protected] DavidJacobs, NEC Research Institute, [email protected] BenjaminB. Kimia, BrownUniversity, [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.