ebook img

Pathwise Estimation and Inference for Diffusion Market Models PDF

237 Pages·2019·2.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pathwise Estimation and Inference for Diffusion Market Models

Pathwise Estimation and Inference for Diffusion Market Models Pathwise Estimation and Inference for Diffusion Market Models Nikolai Dokuchaev Lin Yee Hin CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20190206 International Standard Book Number-13: 978-1-1385-9164-6 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents LegendofNotationsandAbbreviations ix Preface xi 1 Somebackgroundonstochasticanalysis 1 1.1 Basicsofprobabilitytheory . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Probabilityspace . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Randomvariables. . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Expectations . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.4 Conditionalprobabilityandexpectation . . . . . . . . . . . 5 1.1.5 Theσ-algebrageneratedbyarandomvector . . . . . . . . 6 1.2 Basicsofstochasticprocesses . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Specialclassesofprocesses . . . . . . . . . . . . . . . . . 8 1.2.2 Wienerprocess(Brownianmotion) . . . . . . . . . . . . . 9 1.3 Basicsofthestochasticcalculus(Itocalculus) . . . . . . . . . . . . 10 1.3.1 Itoformula . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.2 Stochasticdifferentialequations(Itoequations) . . . . . . . 15 1.3.3 SomeexplicitsolutionsforItoequations. . . . . . . . . . . 16 1.3.4 DiffusionMarkovprocessesandrelatedparabolicequations 17 1.3.5 Martingalerepresentationtheorem . . . . . . . . . . . . . . 19 1.3.6 ChangeofmeasureandGirsanovtheorem . . . . . . . . . . 20 2 Somebackgroundondiffusionmarketmodels 23 2.1 Continuoustimemodelforstockprice . . . . . . . . . . . . . . . . 23 2.2 Continuoustimebond-stockmarketmodel . . . . . . . . . . . . . 24 2.3 Discountedwealthandstockprices . . . . . . . . . . . . . . . . . 25 2.4 Risk-neutralmeasure . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5 Replicatingstrategies . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Arbitragepossibilitiesandthearbitrage-freemarket . . . . . . . . 30 2.7 Thecaseofacompletemarket . . . . . . . . . . . . . . . . . . . . 31 2.8 CompletenessoftheBlack–Scholesmodel . . . . . . . . . . . . . 31 2.9 Optionpricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.9.1 Optionsandtheirprices . . . . . . . . . . . . . . . . . . . 33 2.9.2 Optionpricingforacompletemarket . . . . . . . . . . . . 35 2.9.3 Black–Scholesformula . . . . . . . . . . . . . . . . . . . . 36 2.10 Pricingforanincompletemarket . . . . . . . . . . . . . . . . . . 37 v vi Contents 2.11 Amulti-stockmarketmodel . . . . . . . . . . . . . . . . . . . . . 38 3 Somespecialmarketmodels 41 3.1 Mean-revertingmarketmodel . . . . . . . . . . . . . . . . . . . . 41 3.1.1 Basicpropertiesofamean-revertingmodel . . . . . . . . . 41 3.1.2 AbsenceofarbitrageandtheNovikovcondition. . . . . . . 42 3.1.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Amarketmodelwithdelayincoefficients . . . . . . . . . . . . . . 48 3.2.1 Existence,regularity,andnon-arbitrageproperties . . . . . 48 3.2.2 Timediscretizationandrestrictionsongrowth . . . . . . . . 50 3.3 Amarketmodelwithstochasticnuméraire . . . . . . . . . . . . . 51 3.3.1 Modelsetting . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.2 Replicationofclaims:Strategiesandhedgingerrors . . . . 55 3.3.3 Onselectionofθandtheequivalentmartingalemeasure . . 58 3.3.4 Markovcase . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4 Bibliographicnotesandliteraturereview . . . . . . . . . . . . . . 70 4 Pathwiseinferencefortheparametersofmarketmodels 73 4.1 Estimationofvolatility . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1.1 Representationtheoremsforthevolatility . . . . . . . . . . 73 4.1.2 Estimationofdiscretetimesamples . . . . . . . . . . . . . 75 4.1.3 Reducingtheimpactoftheappreciationrate . . . . . . . . 78 4.1.4 Thealgorithm . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.5 Someexperiments . . . . . . . . . . . . . . . . . . . . . . 81 4.2 Modelingtheimpactofthesamplingfrequency . . . . . . . . . . . 84 4.2.1 Analysisofthemodel’sparameters . . . . . . . . . . . . . 85 4.2.2 MonteCarlosimulationoftheprocesswithdelay . . . . . . 86 4.2.3 Examples for dependence of volatility on sampling fre- quencyforhistoricaldata . . . . . . . . . . . . . . . . . . . 89 4.2.4 Matchingdelayparametersforhistoricaldata . . . . . . . . 93 4.3 InferencefordiffusionparametersforCIR-typemodels . . . . . . . 96 4.3.1 Theunderlyingcontinuoustimemodel . . . . . . . . . . . 96 4.3.2 Arepresentationtheoremforthediffusioncoefficient . . . . 97 4.3.3 Estimationbasedontherepresentationtheorem . . . . . . 98 4.3.4 Numericalexperiments . . . . . . . . . . . . . . . . . . . . 102 4.3.5 Ontheconsistencyofthemethod . . . . . . . . . . . . . . 106 4.3.6 Somepropertiesoftheestimates . . . . . . . . . . . . . . . 107 4.4 Estimationoftheappreciationrates . . . . . . . . . . . . . . . . . 108 4.5 Bibliographicnotesandliteraturereview . . . . . . . . . . . . . . 111 5 Somebackgroundonbondpricing 113 5.1 Zero-couponbonds . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.2 One-factormodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.2.1 Dynamicsofdiscountedbondprices . . . . . . . . . . . . . 116 Contents vii 5.2.2 Dynamicsofthebondpricesundertheoriginalmeasure . . 117 5.2.3 Anexample:TheCox–Ross–Ingresollmodel . . . . . . . . 119 5.3 Vasicekmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.4 Anexampleofamulti-bondmarketmodel . . . . . . . . . . . . . 122 6 Impliedvolatilityandotherimpliedmarketparameters 125 6.1 Risk-neutralpricinginaBlack–Scolessetting . . . . . . . . . . . . 125 6.2 Impliedvolatility:Thecaseofconstantr . . . . . . . . . . . . . . 129 6.3 Correctionofthevolatilitysmileforconstantr . . . . . . . . . . . 130 6.3.1 Imperfectionofthevolatilitysmileforconstantr . . . . . . 130 6.3.2 Apricingrulecorrectingthevolatilitysmile . . . . . . . . . 131 6.3.3 AclassofvolatilitiesinaMarkoviansetting. . . . . . . . . 132 6.4 Unconditionallyimpliedvolatilityandrisk-freerate . . . . . . . . 140 6.4.1 Twocallswithdifferentstrikeprices . . . . . . . . . . . . . 141 6.5 Bondpriceinferredfromoptionprices . . . . . . . . . . . . . . . 141 6.5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.5.2 Inferredρfromputandcallprices . . . . . . . . . . . . . . 142 6.5.3 Applicationtoaspecialmodel . . . . . . . . . . . . . . . . 143 6.6 Adynamicallypurifiedoptionpriceprocess . . . . . . . . . . . . . 144 6.7 Theimpliedmarketpriceofriskwithrandomnuméraire . . . . . . 146 6.7.1 Therisk-freebondsforthemarketwithrandomnuméraire . 146 6.7.2 Thecaseofacompletemarket . . . . . . . . . . . . . . . . 147 6.7.3 Thecaseofanincompletemarket . . . . . . . . . . . . . . 149 6.8 Bibliographicnotes . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7 Inferenceofimpliedparametersfromoptionprices 153 7.1 Sensitivityanalysisofimpliedvolatilityestimation . . . . . . . . . 154 7.1.1 Anunder-definedsystemofnonlinearequations. . . . . . . 154 7.1.2 Numerical analysis using cross-sectional S&P 500 call op- tionsdata . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.1.3 Numerical analysis using longitudinal S&P500 call options data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.2 Abriefreviewofevolutionaryoptimization . . . . . . . . . . . . . 169 7.2.1 Theoriginaldifferentialevolutionalgorithm. . . . . . . . . 171 7.2.2 The Zhang–Sanderson adaptive differential evolution algo- rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.3 Inferenceofimpliedparametersfromover-definedsystems . . . . . 175 7.3.1 Anover-definedsystemofnonlinearequations . . . . . . . 175 7.3.2 Computationalimplementation. . . . . . . . . . . . . . . . 176 7.3.3 Constructionoftheestimationuncertaintyboundsforthees- timatedimplieddiscountratesandimpliedvolatilities . . . 177 7.3.4 Numericalexperimentwithsynthetictestdata . . . . . . . . 178 7.3.5 Numerical analysis using historical S&P500 call options data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.4 Bibliographicnotesandliteraturereview . . . . . . . . . . . . . . 184 viii Contents 8 ForecastofshortratebasedontheCIRmodel 191 8.1 Themodelframework . . . . . . . . . . . . . . . . . . . . . . . . 192 8.1.1 Generalsetting . . . . . . . . . . . . . . . . . . . . . . . . 192 8.1.2 TheCIRmodel . . . . . . . . . . . . . . . . . . . . . . . . 194 8.2 Inference of the implied CIR model parameters based on cross- sectionalzerocouponbondprices . . . . . . . . . . . . . . . . . . 196 8.3 Numericalframeworkfortheinference . . . . . . . . . . . . . . . 196 8.4 Computationalimplementation . . . . . . . . . . . . . . . . . . . 198 8.5 ForecastofshortrateusingtheimpliedCIRmodelparameters . . . 198 8.5.1 Forecastwithinthemulti-curveframework . . . . . . . . . 198 8.5.2 Forecastwithinthesingle-curveframework . . . . . . . . . 199 8.6 Numericalanalysisusinghistoricaldata . . . . . . . . . . . . . . . 200 8.6.1 Shortratepredictioninthemulti-curveframework . . . . . 201 8.6.2 Shortratepredictioninthesingle-curveframework . . . . . 205 8.7 Bibliographicnotesandliteraturereview . . . . . . . . . . . . . . 208 Bibliography 213 Index 223 Legend of Notations and Abbreviations (cid:15) a.e.-almosteverywhere,orforalmostevery (cid:15) a.s.-almostsurely (cid:15) ∀-forall (cid:15) C-thesetofallcomplexnumbers (cid:15) EX -expectationofX (cid:15) EX2 =E(X2),EXY =E(XY) (cid:15) iff-ifandonlyif (cid:15) I istheindicatorfunctionofaneventA,I (x)istheindicatorfunctionofaset A D D (cid:15) L (Ω,F,P),p ∈ [1,+∞)-thesetofclassesofP-equivalentrandomvariables p onaprobabilityspace(Ω,F,P)suchthatE|ξ|p <+∞forp∈[1,+∞),orthat there exists a (non-random) constant c = c(ξ) > 0 such that |ξ| ≤ c a.s.. for p=+∞ (cid:15) N(a,σ2)-thenormaldistributionwiththeexpectationaandthevarianceσ2 (cid:15) ∅-emptyset (cid:15) P(A)-probabilityofaneventA (cid:15) R-thesetofallrealnumbers (cid:15) Rn-thesetofallrealvectors(vectorcolumns)withncomponents (cid:15) VarX -varianceofX (cid:15) x=∆ X -meansthatxisdefinedasX (cid:15) x+ =∆ max(x,0),x− =∆ max(−x,0). (cid:15) |x| - the Euclidean norm (cid:0)Pm x2(cid:1)1/2 for x ∈ Rm or the Frobenius matrix i=1 i (cid:16) (cid:17)1/2 norm Pm x2 formatricesx∈Rm×m. i,j=1 ij ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.