Astronomy&Astrophysicsmanuscriptno.refs (cid:13)c ESO2015 January23,2015 ∼ Passive galaxies as tracers of cluster environments at z 2 V.Strazzullo1,2,E.Daddi1,R.Gobat1,B.Garilli3,M.Mignoli4,F.Valentino1,M.Onodera5,A.Renzini6,A.Cimatti7, A.Finoguenov8,N.Arimoto9,M.Cappellari10,C.M.Carollo5,C.Feruglio11,E.LeFloc’h1,S.J.Lilly5, D.Maccagni3,H.J.McCracken12 M.Moresco7,L.Pozzetti4,G.Zamorani4 1 Irfu/Serviced’Astrophysique,CEASaclay,OrmedesMerisiers,F-91191GifsurYvette,France–e-mail:[email protected] 2 DepartmentofPhysics,Ludwig-Maximilians-Universita¨t,Scheinerstr.1,81679Mu¨nchen,Germany 3 INAF–IASF,viaBassini15,I-20133,Milano,Italy 5 4 INAF-OsservatorioAstronomicodiBologna,viaRanzani1,40127Bologna,Italy 1 5 InstituteforAstronomy,ETHZu¨rich,Wolfgang-Pauli-strasse27,8093Zu¨rich,Switzerland 0 6 INAF-OsservatorioAstronomicodiPadova,Vicolodell’Osservatorio5,I-35122,Padova,Italy 2 7 DipartimentodiFisicaeAstronomia,Universita´diBologna,VialeBertiPichat6/2,I-30127,Bologna,Italy 8 DepartmentofPhysics,UniversityofHelsinki,GustafHa¨llstro¨minkatu2a,FI-0014Helsinki,Finland n 9 NationalAstronomicalObservatoryofJapan,SubaruTelescope,650NorthAohokuPlace,Hilo,HI96720,USA a 10 DepartmentofPhysics,UniversityofOxford,DenysWilkinsonBuilding,KebleRoad,Oxford,OX13RH,UK J 11 IRAM-InstitutdeRadioastronomieMillime´trique,300ruedelaPiscine,38406SaintMartindHe`res,France 1 12 InstitutdAstrophysiquedeParis,UMR7095CNRS,Universite´PierreetMarieCurie,Paris,France 2 ] O ABSTRACT C Even10billionyearsago,thecoresofthefirstgalaxyclustersareoftenfoundtohostacharacteristicpopulationofmassivegalaxies . h withalreadysuppressedstarformation.Herewesearchfordistantclustercandidatesatz∼2usingmassivepassivegalaxiesastracers. p Withasampleof∼40spectroscopicallyconfirmedpassivegalaxiesat1.3<z<2.1,wetunephotometricredshiftsofseveralthousands - passivesourcesinthefull2sq.deg.COSMOSfield.Thisallowsustomaptheirdensityinredshiftslices,probingthelargescale o structureintheCOSMOSfieldastracedbypassivesources.Wereporthereonthethreestrongestpassivegalaxyoverdensitiesthat r weidentifyintheredshiftrange1.5<z<2.5.Whiletheactualnatureoftheseconcentrationsisstilltobeconfirmed,wediscusstheir t s identificationprocedure,andtheargumentssupportingthemascandidategalaxyclusters(likelymid-1013M range).Althoughthis ⊙ a searchapproachislikelybiasedtowardsmoreevolvedstructures,ithasthepotentialtoselectstillrare,cluster-likeenvironmentsclose [ totheirepochoffirstappearance,enablingnewinvestigationsoftheevolutionofgalaxiesinthecontextofstructuregrowth. 1 Keywords.galaxies:clusters:general-galaxies:high-redshift-cosmology:large-scalestructureofUniverse v 3 2 3 1. Introduction z∼2passivesourcesarenolongerthedominantpopulationeven 5 among massive galaxies. However, the observed evolution of 0 Up to at least z∼1, passive galaxies typically with early- massiveclustergalaxiesuptoz∼1(andalsotheoreticalmodels, . type morphology dominate the high-mass end of the galaxy e.g. DeLuciaetal. 2006) typically suggests early (z&2-3) for- 1 population, and are the best tracers of the highest density mationepochsfortheirstellarpopulations(e.g.,Meietal.2009; 0 5 peaks in the large scale structure. The evolution of pas- Manconeetal.2010;Strazzulloetal.2010).Wemightthusex- 1 sive galaxy populations at z.1 – and in particular with pect that the surge of passive galaxies around 10 billion years : respect to environmental effects – has been explored in agooccurreddifferentlyindifferentenvironments. v detail also thanks to large spectroscopic campaigns (e.g., Severalrecentstudieshaveclaimedevidenceofsignificantstar i X Kauffmannetal. 2004; Bernardietal. 2006; Gallazzietal. formation even in central cluster regions at z&1.5 (among sev- 2006, 2014; vanderWeletal. 2008; Sa´nchez-Bla´zquezetal. eral others, Hiltonetal. 2010; Tranetal. 2010; Hayashietal. r a 2009; Kovacˇetal. 2014; Valentinuzzietal. 2011; Muzzinetal. 2010;Santosetal. 2011;Fassbenderetal.2011;Brodwinetal. 2012). On the other hand, spectroscopy of passive galaxies at 2013),suggestingthatindeedweareapproachingtheformation z&1.5 has been until recently very difficult: in spite of several epoch of massive cluster galaxies. However, it is also notice- investigationspushingspectroscopicconfirmationandmorede- ablethatmassivepassivegalaxiesareoftenfoundeveninsuch tailedstudiestohigherredshifts(e.g.Cimattietal.2004,2008; most distant clusters, although in many cases sharing their en- Daddietal.2005;Krieketal.2006,2009;Onoderaetal.2012; vironment with galaxies in a still active formation phase (e.g., vandeSandeetal. 2011, 2013; Toftetal. 2012; Gobatetal. Kurketal.2009;Papovichetal.2010;Gobatetal.2011,2013; 2012,2013;Brammeretal.2012;Weiner2012;Krogageretal. Tanakaetal. 2012, 2013; Spitleretal. 2012; Strazzulloetal. 2014; Newmanetal. 2014; Bellietal. 2014), sizable spectro- 2013;Newmanetal.2014;Andreonetal.2014).Thismaysug- scopic samples are still rare, and studying z>1.5 passive popu- gestthat,evenatacosmictimewhenstarformationratedensity lations mainly relies on photometric samples (e.g. Wuytsetal. is at its peak (e.g. Madau&Dickinson 2014), and star forma- 2010; Belletal. 2012; Ilbertetal. 2013; Muzzinetal. 2013a; tionisstillactiveinaconsiderablefractionofmassivegalaxies Cassataetal. 2013). These studies show that the number den- (e.g.Ilbertetal.2013;Muzzinetal.2013a),thedensestcoresof sity of passive galaxies rapidly falls beyond z>1, so that by 1 Strazzulloetal.:Passiveoverdensitiesatz∼2 Fig.2: Distributions of K-band magnitude, stellar mass and photometric redshift for the sample of K < 23, z > 1.3 passive AB galaxies.Thethreeleftmostpanelsshowthefullsample(seetext,blackline),itspBzKsub-sample(redline),andthespectroscopic sample(scaledby×10,redshadedarea).Verticaldottedlinesshowthemagnitudeandmass(atz<2.5)completenesslimitsofthe parentK-selectedcatalog(seetext).Therightmostpanelshowsthefullphoto-zdistributionoftheK <23passivesample(black AB line),andofitslog(M/M )>10.9sub-sample(shadedarea,lighter-grayatz>2.5wheresampleisbeyondmasscompleteness). ⊙ most evolved cluster progenitorsalready host a typically small scopicallyconfirmedpBzKs,selectedintherange1.3<z <2.1 spec butcharacteristicpopulationofmassivequiescentgalaxies.For and with restframe UVJ colors (Williamsetal. 2009) consis- thisreason,overdensitiesofpassivesourcesmightbeconsidered tentwithpassivepopulations(15and27galaxiesfromtheO12 aspossiblesignpoststoclustersatleastuptoz∼2. and VIMOS samples, respectively, including 3 24µm-detected sources as noted below). Fig. 1 shows the performanceon this sample of our photo-zs, estimated with EAzY (Brammeretal. 2. Photometricredshiftestimationforhigh-redshift 2008) and calibrated as in O12. The normalized median abso- passivegalaxiesintheCOSMOSfield lutedeviation(NMAD)of∆z/(1+z)is2.5%onthefullsample, or1.8%excludinggalaxieswithlessreliablez (Fig.1),with Usingoneofthefirstsizablesamplesofz&1.4passivegalaxies spec nocatastrophicoutliers(thus<2.5%forthissample).Allresults in the COSMOS field for calibration, in Onoderaetal. (2012) presentedherearebasedonthephotometriccatalogbyM101. (hereafter O12) we could estimate more accurate photomet- ric redshifts (photo–zs, z ) for high-redshiftpassive sources. phot We havenow assembled a new, independentsample of passive 3. Passivegalaxyoverdensitiesatz> 1.5 galaxiesinCOSMOSwithredshiftsmeasuredthroughUVfea- tures using VLT/VIMOS spectroscopy.We targeted 29 IAB<25 Spectroscopic confirmation of large passive galaxy samples at galaxiesselectedaspassiveBzKs(“pBzKs”,Daddietal.2004, highredshiftisfornowprecluded,sowerelyonpassivecandi- plus624µm-detectedpBzKs)fromtheMcCrackenetal.(2010) dates with photo-zscalibrated as above. We select a sample of (hereafterM10)catalog.A redshiftwasmeasuredfor34ofthe z>1.5passivegalaxiesasfollows:withaninitialBzKselection 35 targets, with a robust estimate for 29 sources. The observa- ontheM10K <23catalog,wetakeallpBzKgalaxies,aswell AB tions,analysis,andafullredshiftlistwillbepresentedinGobat asgalaxiesformallyclassified asstar-formingBzKs (“sBzKs”) et al. (in prep.). Here we focuson a sub-sample of 42 spectro- buthavingaS/N<5intheB-(andpossiblyz-)band.Fromthis firstselection,weretainallgalaxiesthatalsohaveUVJpassive colors (assuming their z as of Sec. 2). Sources detected at phot 24µm and satisfying the abovecriteria are retained,because of thepossibilityofAGN-powered24µmflux.Sourceswithpossi- blycontaminatedIRACphotometry(asintheM10catalog)were discarded(<10%).InFig.2,blackandredlinesshowthestellar mass, K-band magnitude and photo–z distributions for the full retained sample of passive galaxies according to these criteria, andforitssubsampleofpBzKsources,respectively. The K <23 limit corresponds to a 90% completeness for AB point-like sources, going down to ∼22.5 for disk-like pro- files (see M10). At z∼2.5 these limits would correspond to a masscompletenessoflog(M/M )∼10.8-11(∼10.9inthefollow- ⊙ ing, Salpeter (1955) IMF) for an unreddened solar metallicity Bruzual&Charlot(2003)SSPformedatz∼5.Ontheotherhand, thecombinationof selectioncriteriaadoptedaboveis expected 1 Anevenbetterphoto-zaccuracy(aslowas1.5%,withamarkedim- provementatz&1.8)canbeobtainedcalibratingphoto-zsonthissam- Fig.1: Comparison of z vs. z for the full spectroscopic ple with the more recent photometry from the Muzzinetal. (2013b) phot spec sample of 1.3 < z < 2.1 passive galaxies. Lower quality z UltraVISTA catalog, in agreement with - and only marginally better spec determinations are shown in gray. Blue and red circles mark than-theresultsobtainedwithMuzzinetal.(2013b)photo-zs,aswill bediscussedinaforthcomingpaper(Strazzulloetal.,inprep.).Herewe sourcesfromtheVIMOSandO12samples,respectively.Orange usetheM10catalogwhichincludesthesouthernpartofthe2sq.deg. stars highlight MIPS-detected sources. Dotted and solid lines COSMOSfieldwhereoneofouroverdensities(Sec.3.1)isfound,not showthebisectorandarelativescatterof2.5,5and10%. coveredbytheUltraVISTAsurvey(McCrackenetal.2012). 2 Strazzulloetal.:Passiveoverdensitiesatz∼2 Fig.3:ExamplesofΣ mapsinredshiftslicesofthefullpassivegalaxysampleinthe2sq.deg.COSMOSfield(Northisup,Eastis 5 left).Mapsarescaledsothatredcolorscorrespondto>5σsignificance.ThethreecandidateoverdensitiesdescribedinSec.3.1are highlightedwithwhitecircles(2Mpcradiusproper).Ineachplot,theinsetshowsthedistributionoflog(Σ )valuesinthemapand 5 itsgaussianfit(whiteandorangelines,respectively),andthewhitearrowshowsthepeakΣ valueofthehighlightedoverdensity. 5 toresultinalargelypure(intermsofcontaminants)butnotcom- ∼50kpcand3-4Mpc),whileΣ wouldprobemediandistances 7 pletesampleofmassive(log(M/M )&10.9)passivegalaxies.For closerto2Mpcwithminimum/maximumof0.5/4.5Mpcatz∼2, ⊙ thisreason,wemaybemissingsomeoverdensitiesorreducing thus becoming less sensitive to the scales we need to probe. theirsignificance,whichwouldaffectinaconservativewaythe Fig.3showsthreeexamplesofΣ maps.Foreachmap,weesti- 5 resultspresentedhere.TheBzK selection,andthe depthofthe matethesignificanceofoverdensitiesbyfittingthedistribution M10 catalog, effectively limit our sample at z>1.5 and z<2.5, oflog(Σ )inthewholemapwithaGaussian(Fig.3). 5 respectively(Fig. 2, right). The fullsample of K <23 passive At the same time, we also use an independentapproach to AB galaxycandidatesincludes∼4500sources.Ofthese,∼3500are searchforconcentrationsofmassivepassivegalaxieswithcon- at 1.5≤zphot≤2.5(∼70%atlog(M/M⊙)>10.9,∼50%selected as sistentphoto–zsinaverysmallcluster-coresizedarea.Inpartic- pBzK,∼10%24µm-detected). ular,basedonobservationsofthez = 2clusterClJ1449+0857 (Gobatetal. 2011, 2013; Strazzulloetal. 2013, other exam- ples in Sec. 1), we search our log(M/M )>10.9 passive sam- 3.1.Identificationofclustercandidates ⊙ ple forsourceswith atleast threeotherpassive galaxieswithin We buildlocaldensitymapsforthefullCOSMOSfieldinred- |∆z|/(1+z)<7.5%(accountingforphoto-zuncertaintiesdescribed shift slices, based on the catalog of passive galaxy candidates above)andaphysicaldistance≤150kpc2.Thisapproachinde- describedabove.Inspiteofthequoted∼2%photo-zrelativeac- pendently retrieves three most significant (& 7σ in the Σ5 - as curacy(bycomparisonwithspectroscopicredshifts,Sec.2),we well as Σ3 - maps) overdensitieshighlighted in Fig. 3, and de- needtoconsiderthatthespectroscopicsampleisverybiasedto- scribedherebelow: wardsbrighter,lower-redshiftsources(Fig.2),thusphoto-zper- •CC1002+0134at1.5.z .1.8–Aconcentrationofpas- phot formanceonthebulkofoursampleislikelysignificantlyworse. sive sources around RA, Dec ∼10h02m40s, +01◦34m20s, with Weestimatedamorerealisticphoto-zaccuracyasafunctionof 4 galaxies within a radius r = 90 kpc and z within ≤1.5σ phot magnitude,recalculatingphoto-zson SEDsof well-fitted spec- (giveneachsourcemagnitude,basedonthesimulationdescribed troscopicsources(|∆z|/(1+z)< 2.5%)dimmedtofaintermagni- above) from a mean z ∼1.76. However, the photo-z distri- phot tudes,randomlyscatteringfluxesin thedifferentbandsaccord- bution of the central sources in this candidate overdensity is ingtophotometricerrorsinourcatalog.Thissimulationindeed quitebroadcomparedtotheexpectedphoto-zuncertainties(see givesaphoto-zaccuracy<2.5%atKAB.21(Sec.2),butrisingto Fig. 4). This might suggest a chance superposition of passive ∼3.5%(5%)atKAB∼22(22.5),andtomorethan6%approaching galaxies,orpossiblyofdifferent,unrelatedstructures,alongthe ourKAB ∼23limit.Theseestimatesare“model-independent”in lineofsightat1.5 < z < 1.8.Ontheotherhand,Aravenaetal. the sense that they use observed (rather than synthetic) SEDs, (2012)alreadyreportedtheidentificationofacandidatecluster but they still assume that SEDs of less massive and/or higher atz ∼ 1.55atthesameposition,basedonanoverdensityof phot redshift sources in our sample behave similarly to those of the galaxieswith 1.5<z <1.6, a radio source at a consistent red- phot spectroscopicsourcesusedasinputsinthesimulation.Forcom- shift, a tentativedetection of extendedX-rayemission, and the parison,theformal68%errorsestimatedbyEAzYonthesimu- presence of a small population of passive sources. The actual latedSEDswouldbeonaverage40-50%larger(reaching∼8% natureofthisstructureisthusstillunclear. at KAB∼23).For thisreason,we build ourdensitymapsin red- •CC1003+0223atzphot∼1.90–Aconcentrationof4passive shift slices of ∆z=±0.2 (correspondingto a ±1σ relative accu- galaxiesatRA,Dec∼10h03m05s,+02◦23m24s withinr<110kpc racyof6-8%at1.5<z<2.5)withastepof0.05incentralredshift. andz within.1.4σfromthemeanz (afurthergalaxywith We use the Σ5 (5th nearest neighbour) density estimator, zphotcpohontsistentwithin1σisfoundatr<p3ho4t0kpc).Halfofthese4 which for our sample probesa median (overthe full map) dis- sourceswereselectedasUVJ-passivesBzKs(seeSec.3).None tance of ∼1.4 Mpc in the z∼2 slice, with minimum and maxi- mumdistancesof100-200kpcand4-5Mpcinallredshiftslices, 2 Based on our sample of log(M/M )>10.9 passive galaxies, the ⊙ thusproperlyprobingthetypicalscalesweareinvestigating.For Poissonian probability of finding ≥ 3 neighbours at ≤ 150 kpc (or comparison, a Σ3 estimator would also probe such scales (me- ≥ 4 sources within a radius of ≤ 150 kpc) with a |∆z|/(1+z)< 7.5% dian distance ∼1.1 Mpc at z∼2, minimum/maximum distances is<5×10−4(<2×10−7,respectively)atallredshiftsprobed. 3 Strazzulloetal.:Passiveoverdensitiesatz∼2 Fig.4:Photo–zdistributionsforthewhole(passiveandstar-forming)populationoflog(M/M )> 10.9galaxieswithinanaperture ⊙ ofr<600kpcfromthethreepassiveoverdensitiesaslabeled(redlines,errorsasfromGehrels1986).Galaxiesandphoto–zsused here are from Muzzinetal. (2013b) for CC1003+0223 and CC0958+0158, and from Ilbertetal. (2009) for CC1002+0134 (see text). In each panel, the blue line and dotted area show the median and 16th −84th percentiles of the photo–z distribution (from thesamecatalogs)in r <600kpcaperturesat100randompositionsintheCOSMOSfield,whilethegrayed-outregionshowsthe redshiftrangewherethesampleisnolongermass-complete.Blackfilled(empty)circlesscatteredabovethehistograms(atrandom y-axiscoordinates)showourphoto-zdeterminationsforthepassive sampleusedinthiswork within300kpc(600kpc)fromthe overdensitycenter(larger/smallersymbolsshowgalaxiesmore/lessmassivethanlog(M/M )=10.9). ⊙ is24µmdetected.AllareconsistentwithbeingUVJ-passivealso determinationsfor our passive galaxy sample aroundthe over- in the Muzzinetal. (2013b) catalog, three out of four with a densitiesinthesameapertureandmassrange.Althoughclearly photo-zconsistentwithin1σwiththemeanz estimatedhere. affected by limited statistics, Fig. 4 shows the correspondence phot Theredshiftdistributionofthecentralsourcesisconsistentwith between our photo-zs of passive sources identifying the over- thepresenceofasinglestructure.Anotheroverdensityofsimi- densities, and the excess in the redshift distribution from com- larsignificanceataconsistentphoto-zisvisibleintheΣ mapat pletelyindependentphoto-zdeterminationsofthewholegalaxy 5 <4MpcWest(Fig.3). populationintheirsurroundings. •CC0958+0158atz ∼2.35-Aconcentrationof4passive phot galaxies at RA, Dec∼9h58m53s,+01◦58m01s within r<130 kpc 4. Discussionandsummary andaz within.0.8σfromthemeanz (onefurther,lower- phot phot massgalaxyatthesamez isfoundatr<290kpc).Giventheir Thisletterinvestigatesthepossibleidentificationoffirstcluster- phot redshift (thus faintness) all of these sources were selected as like environments using evolved galaxy populations as tracers UVJ-passivesBzKs(seeSec. 3).Onemightbeassociatedwith of an early-quenchedcluster core. We describedthe identifica- a 24µm detection. All are consistent with being UVJ-passive tionof3candidateoverdensitiesofpassivegalaxies,selectedin alsointheMuzzinetal.(2013b)catalog,withphoto-zsconsis- redshift-sliceddensitymapsandwith propertiessimilarto pas- tent within 1σ with the mean z estimated here. The photo- sive galaxyconcentrationsin z∼2 clusters. Thisstudy relieson phot z distribution is very compact, consistent with a single struc- accuratephoto-zdeterminationforhigh-redshiftpassivesources ture.Anoverdensityataconsistentpositionandredshiftisalso calibratedononeofthelargestspectroscopicsamplesavailable visible in Scovilleetal. (2013) density maps. We also note the to date. We present here only the first results on the strongest proximity of the Spitleretal. (2012) cluster candidate at simi- candidateoverdensities.Furtherinvestigationfocusingonalter- lar redshift, ∼14 Mpc NE. Chiangetal. (2014) also claim the native sample selections and the identification of lower-mass presenceofseveralproto-clustercandidateswithinafewMpcof structures,withimprovedphoto-zsbasedonmorerecent,deeper CC0958+0158atasimilarphoto-z. photometry(Sec. 2),willbepresentedinaforthcomingpaper. InFig.4weshowforcomparisonthephoto–zdistributionof Wecurrentlyhavenoproofthatthecandidateoverdensities a mass-limited sample of the whole (passive and star-forming) weidentifiedarerealstructures.Eveniftheywereactuallyclus- galaxy population in the surroundings (r < 600 kpc) of each ters, their expected mass and redshift would put them beyond passive overdensity, with respect to the distribution in same- reachoftheChandraC-COSMOS(Elvisetal.2009)andXMM- size apertures at 100 random positions in the COSMOS field. Newton(Hasingeretal. 2007; Cappellutietal. 2009) programs These distributions in Fig. 4 are based on public galaxy cata- in COSMOS, which place 3σ limits of 4-9×1043 erg s−1 logsandphoto-zdeterminations,totallyindependentfromthose on their X-ray luminosity, thus 5-7×1013M⊙ on their mass we use in this work. For CC1003+02233 and CC0958+0158 (Leauthaudetal.2010).Thiswouldbeconsistentwiththeirsim- weusetheMuzzinetal.(2013b)UltraVISTAcatalog,whilefor ilaritieswiththepassiveconcentrationinClJ1449+0857(M∼ CC1002+0134-notcoveredbytheUltraVISTAsurvey-weuse 5×1013M⊙,Gobatetal.2011,2013;Strazzulloetal.2013).As theIlbertetal.(2009)catalog(notethatthisisani-selectedcat- areference,inaWMAP7(Komatsuetal.2011)cosmologywe alog, thus not optimal in this redshift range, as shown by the expecttofind ∼2-8structuresmoremassivethan 5-7×1013 M⊙ grayregionin Fig. 4, left).We alsoshow inFig. 4ourphoto-z inthe1.7<z<2.5rangeina2sq.deg.field(orafactor∼2higher withaPlanckcosmology,PlanckCollaborationetal.2014). 3 Thisoverdensityisattheedgeoftheareaprobedbyourcatalog(see A final confirmation necessarily relies on spectroscopic Fig.3).Forthisreason,ther<600kpcapertureisnotfullycoveredby follow-up, which is not available yet. For the time being, just thecatalog;thefielddistributioninFig.4isthusscaledaccordingly,by for the most distant of our candidate overdensities, covered theeffectivelycoveredarea. by the outer part of the zCOSMOS-deep survey (Lillyetal. 4 Strazzulloetal.:Passiveoverdensitiesatz∼2 References Andreon,S.,Maughan,B.,Trinchieri,G.,&Kurk,J.2009,A&A,507,147 Andreon,S.,Newman,A.B.,Trinchieri,G.,etal.2014,A&A,565,A120 Aravena,M.,Carilli,C.L.,Salvato,M.,etal.2012,MNRAS,426,258 Bell,E.F.,vanderWel,A.,Papovich,C.,etal.2012,ApJ,753,167 Belli,S.,Newman,A.B.,Ellis,R.S.,&Konidaris,N.P.2014,ApJ,788,L29 Bernardi,M.,Nichol,R.C.,Sheth,R.K.,etal.2006,AJ,131,1288 Brammer,G.B.,vanDokkum,P.G.,&Coppi,P.2008,ApJ,686,1503 Brammer,G.B.,vanDokkum,P.G.,Franx,M.,etal.2012,ApJS,200,13 Brodwin,M.,Stanford,S.A.,Gonzalez,A.H.,etal.2013,ApJ,779,138 Bruzual,G.&Charlot,S.2003,MNRAS,344,1000 Cappelluti,N.,Brusa,M.,Hasinger,G.,etal.2009,A&A,497,635 Cassata,P.,Giavalisco,M.,Williams,C.C.,etal.2013,ApJ,775,106 Chiang,Y.-K.,Overzier,R.,&Gebhardt,K.2014,ApJ,782,L3 Cimatti,A.,Cassata,P.,Pozzetti,L.,etal.2008,A&A,482,21 Cimatti,A.,Daddi,E.,Renzini,A.,etal.2004,Nature,430,184 Daddi,E.,Cimatti,A.,Renzini,A.,etal.2004,ApJ,617,746 Daddi,E.,Renzini,A.,Pirzkal,N.,etal.2005,ApJ,626,680 Fig.5: The distribution of spectroscopic redshifts around the DeLucia,G.,Springel,V.,White,S.D.M.,etal.2006,MNRAS,366,499 CC0958+0158 overdensity (see text). The gray and black his- Diener,C.,Lilly,S.J.,Knobel,C.,etal.2013,ApJ,765,109 togramsshowthedistributionwithin600and2000kpc,respec- Elvis,M.,Civano,F.,Vignali,C.,etal.2009,ApJS,184,158 tively.The insetshowsthe spatialdistributionaroundthe over- Fassbender,R.,Nastasi,A.,Bo¨hringer,H.,etal.2011,A&A,527,L10 Gallazzi,A.,Bell,E.F.,Zibetti,S.,etal.2014,ApJ,788,72 densitycenterofgalaxieswithin∆z ∼ 0.1(or∆z ∼ 0.2,smaller Gallazzi,A.,Charlot,S.,Brinchmann,J.,etal.2006,MNRAS,370,1106 symbols)of thethreespikesatz ∼2.17,2.19and2.44,as indi- Gehrels,N.1986,ApJ,303,336 cated.Thethreegraycircleshaveradiiof0.5,1,2Mpcproper. Gobat,R.,Daddi,E.,Onodera,M.,etal.2011,A&A,526,A133 Gobat,R.,Strazzullo,V.,Daddi,E.,etal.2013,ApJ,776,9 Gobat,R.,Strazzullo,V.,Daddi,E.,etal.2012,ApJ,759,L44 Hasinger,G.,Cappelluti,N.,Brunner,H.,etal.2007,ApJS,172,29 Hayashi,M.,Kodama,T.,Koyama,Y.,etal.2010,MNRAS,402,1980 2007, and in prep.) and by a Subaru/MOIRCS spectroscopy Hilton,M.,Lloyd-Davies,E.,Stanford,S.A.,etal.2010,ApJ,718,133 program(Valentinoetal. 2014), we havebeen ableto combine Ilbert,O.,Capak,P.,Salvato,M.,etal.2009,ApJ,690,1236 available spectroscopic redshifts – all of star-forming galaxies Ilbert,O.,McCracken,H.J.,LeFe`vre,O.,etal.2013,A&A,556,A55 Kauffmann,G.,White,S.D.M.,Heckman,T.,etal.2004,MNRAS,353,713 – to tentatively probe the redshift distribution in its surround- Komatsu,E.,Smith,K.M.,Dunkley,J.,etal.2011,ApJS,192,18 ings. This small, a-posteriori-assembled spectroscopic sample, Kovacˇ,K.,Lilly,S.J.,Knobel,C.,etal.2014,MNRAS,438,717 is hampered by poor sampling of the central, densest cluster- Kriek,M.,vanDokkum,P.G.,Franx,M.,etal.2006,ApJ,649,L71 candidateregion,andsub-optimaltargetselection.Nonetheless, Kriek,M.,vanDokkum,P.G.,Labbe´,I.,etal.2009,ApJ,700,221 apossibleredshiftspikeappearsatz∼2.19with5(3)galaxiesat Krogager,J.-K.,Zirm,A.W.,Toft,S.,&whatever,x.2014,ApJ,797,17 Kurk,J.,Cimatti,A.,Zamorani,G.,etal.2009,A&A,504,331 2.18.z .2.2within∼1600(500)kpcfromtheoverdensity spec Leauthaud,A.,Finoguenov,A.,Kneib,J.-P.,etal.2010,ApJ,709,97 center,plustwomorespikesofgalaxieswithin2Mpcofthecen- Lilly,S.J.,LeFe`vre,O.,Renzini,A.,etal.2007,ApJS,172,70 ter,atz∼2.17andz∼2.44(6and5galaxieswithin∆z∼±0.01, Madau,P.&Dickinson,M.2014,ARA&A,52,415 respectively,Fig.5).Althoughthespikescontainasimilarnum- Mancone,C.L.,Gonzalez,A.H.,Brodwin,M.,etal.2010,ApJ,720,284 McCracken,H.J.,Capak,P.,Salvato,M.,etal.2010,ApJ,708,202 ber of galaxies, their spatial distribution(Fig. 5) mightsuggest McCracken,H.J.,Milvang-Jensen,B.,Dunlop,J.,etal.2012,A&A,544,A156 that the passive overdensity is more likely at z ∼ 2.2. Even if Mei,S.,Holden,B.P.,Blakeslee,J.P.,etal.2009,ApJ,690,42 somewhatlowerthantheestimatedphoto-zofthepassivegalax- Mei,S.,Scarlata,C.,Pentericci,L.,etal.2014,ArXive-prints ies,thiswouldbeanywayconsistentwithintheuncertainties. Muzzin,A.,Marchesini,D.,Stefanon,M.,etal.2013a,ApJ,777,18 Muzzin,A.,Marchesini,D.,Stefanon,M.,etal.2013b,ApJS,206,8 Dedicatedfollow-upworkisobviouslystillneededtoverify Muzzin,A.,Wilson,G.,Yee,H.K.C.,etal.2012,ApJ,746,188 whether these candidate overdensities are indeed signposts for Newman,A.B.,Ellis,R.S.,Andreon,S.,etal.2014,ApJ,788,51 early cluster environments. If successful, this approach would Onodera,M.,Renzini,A.,Carollo,M.,etal.2012,ApJ,755,26 provide a further option to extend the investigation of distant Papovich,C.,Momcheva,I.,Willmer,C.N.A.,etal.2010,ApJ,716,1503 cluster-like structures to the z ∼ 2 − 2.5 range. In compari- PlanckCollaboration,Ade,P.A.R.,Aghanim,N.,etal.2014,A&A,571,A16 Salpeter,E.E.1955,ApJ,121,161 son with most other (proto-)cluster search techniques at these Sa´nchez-Bla´zquez,P.,Jablonka,P.,Noll,S.,etal.2009,A&A,499,47 redshifts,e.g.the“IRACselection”(e.g., Papovichetal.2010; Santos,J.S.,Fassbender,R.,Nastasi,A.,etal.2011,A&A,531,L15 Stanfordetal. 2012), targeted searches around radio-galaxies Scoville,N.,Arnouts,S.,Aussel,H.,etal.2013,ApJS,206,3 (e.g.,Venemansetal.2007;Wylezaleketal.2013),3Dmapping Spitler,L.R.,Labbe´,I.,Glazebrook,K.,etal.2012,ApJ,748,L21 Stanford,S.A.,Brodwin,M.,Gonzalez,A.H.,etal.2012,ApJ,753,164 (withspectroscopicorphotometricredshifts,e.g., Dieneretal. Strazzullo,V.,Gobat,R.,Daddi,E.,etal.2013,ApJ,772,118 2013;Scovilleetal.2013; Chiangetal. 2014;Meietal. 2014), Strazzullo,V.,Rosati,P.,Pannella,M.,etal.2010,A&A,524,A17 or – closer to what done here – overdensities of optically red Tanaka,M.,Finoguenov,A.,Mirkazemi,M.,etal.2012,ArXive-prints galaxies (e.g., Andreonetal. 2009; Spitleretal. 2012), the ap- Tanaka,M.,Toft,S.,Marchesini,D.,etal.2013,ApJ,772,113 proachdiscussed in this work is likely to favour, by definition, Toft,S.,Gallazzi,A.,Zirm,A.,etal.2012,ApJ,754,3 Tran,K.,Papovich,C.,Saintonge,A.,etal.2010,ApJ,719,L126 themostevolvedenvironments,allowingabetterprobeofthedi- Valentino,F.,Daddi,E.,Strazzullo,V.,etal.2014,ArXive-prints versityofclusterprogenitorsatacrucialtimefortheformation Valentinuzzi,T.,Poggianti,B.M.,Fasano,G.,etal.2011,A&A,536,A34 ofbothclustersandtheirmassivegalaxies. vandeSande,J.,Kriek,M.,Franx,M.,etal.2013,ApJ,771,85 vandeSande,J.,Kriek,M.,Franx,M.,etal.2011,ApJ,736,L9 Acknowledgements. WethankM.PannellaandA.Saroforhelpfulinputs.VS, vanderWel,A.,Holden,B.P.,Zirm,A.W.,etal.2008,ApJ,688,48 ED,RGandFVweresupportedbygrantsERC-StGUPGAL240039andANR- Venemans,B.P.,Ro¨ttgering,H.J.A.,Miley,G.K.,etal.2007,A&A,461,823 08-JCJC-0008.ACandMMacknowledge grants ASIn.I/023/12/0andMIUR Weiner,B.J.2012,ArXive-prints PRIN2010-2011”ThedarkUniverseandthecosmicevolutionofbaryons;from Williams,R.J.,Quadri,R.F.,Franx,M.,etal.2009,ApJ,691,1879 currentsurveystoEuclid”.BasedonobservationsfromESOTelescopesunder Wuyts,S.,Cox,T.J.,Hayward,C.C.,etal.2010,ApJ,722,1666 programIDs086.A-0681,088.A-0671,LP175.A-0839,and179.A-2005. Wylezalek,D.,Galametz,A.,Stern,D.,etal.2013,ApJ,769,79 5