ebook img

Particle Physics PDF

122 Pages·2012·2.594 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Particle Physics

PARTICLE PHYSICS    Edited by Eugene Kennedy Particle Physics Edited by Eugene Kennedy Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Vana Persen Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published April, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Particle Physics, Edited by Eugene Kennedy p. cm. ISBN 978-953-51-0481-0 Contents   Preface VII Chapter 1 The Generation Model of Particle Physics 1 Brian Robson Chapter 2 Constraining the Couplings of a Charged Higgs to Heavy Quarks 29 A. S. Cornell Chapter 3 Introduction to Axion Photon Interaction in Particle Physics and Photon Dispersion in Magnetized Media 49 Avijit K. Ganguly Chapter 4 The e-Science Paradigm for Particle Physics 75 Kihyeon Cho Chapter 5 Muon Colliders and Neutrino Effective Doses 91 Joseph John Bevelacqua Preface   Interest in particle physics continues apace. With the Large Hadron Collider showing  early tantalizing glimpses of what may yet prove to be the elusive Higgs Boson,  particle physics remains a fertile ground for creative theorists. While the Standard  model of particle physics remains hugely successful, nevertheless it is still not fully  regarded as a complete holistic description. This book describes the development of  what is termed the generation model, which is proposed as an alternative to the  standard model and provides a new classification approach to fundamental particles.  A  further  chapter  describes  an  extension  to  the  standard  model  involving  the  possibility of a charged Higgs boson and includes an outline of how experimental  evidence may be sought at LHC and B‐factory facilities. Coupling of postulated axion  particles to photons is tackled with particular reference to magnetized media, together  with possible implications for detection in laboratory experiments or astrophysical  observations. Modern particle physics now involves major investments in hardware  coupled with large‐scale theoretical and computational efforts. The complexity of such  synergistic coordinated entities is illustrated within the framework of the e‐science  paradigm. Finally, an unexpected and interesting description of the potential radiation  hazards associated with extremely weakly interacting neutrinos is provided in the  context of possible future designs of intense muon‐collider facilities.    Eugene Kennedy  Emeritus Professor  School of Physical Sciences,  Dublin City University  Ireland 1 The Generation Model of Particle Physics Brian Robson Department of Theoretical Physics, Research School of Physics and Engineering, The Australian National University, Canberra Australia 1.Introduction The main purpose of this chapter is to present an alternative to the Standard Model (SM) (Gottfried and Weisskopf, 1984) of particle physics. This alternative model, called the Generation Model (GM) (Robson, 2002; 2004; Evans and Robson, 2006), describes all the transition probabilities for interactions involving the six leptons and the six quarks, which form the elementary particles of the SM in terms of only three unified additive quantum numbers instead of the nine non-unified additive quantum numbers allotted to the leptons andquarksintheSM. The chapter presents (Section 2) an outline of the current formulation of the SM: the elementary particles and the fundamental interactions of the SM, and the basic problem inherent in the SM. This is followed by (Section 3) a summary of the GM, highlighting the essential differences between the GM and the SM. Section 3 also introduces a more recent development of a composite GM in which both leptons and quarks have a substructure. ThisenhancedGMhasbeennamedtheCompositeGenerationModel(CGM)(Robson,2005; 2011a). In this chapter, for convenience, we shall refer to this enhanced GM as the CGM, wheneverthesubstructureofleptonsandquarksisimportantforthediscussion. Section4 focusesonseveralimportantconsequencesofthedifferentparadigmsprovidedbytheGM. Inparticular: theoriginofmass,themasshierarchyoftheleptonsandquarks,theoriginof gravityandtheoriginofapparentCPviolation,arediscussed. Finally,Section5providesa summaryanddiscussesfutureprospects. 2.Standardmodelofparticlephysics TheStandardModel(SM)ofparticlephysics(GottfriedandWeisskopf,1984)wasdeveloped throughoutthe20thcentury,althoughthecurrentformulationwasessentiallyfinalizedinthe mid-1970s following the experimental confirmation of the existence of quarks (Bloom et al., 1969;Breidenbachetal.,1969). The SM has enjoyed considerable success in describing the interactions of leptons and the multitudeofhadrons(baryonsandmesons)witheachotheraswellasthedecaymodesofthe unstableleptonsandhadrons.Howeverthemodelisconsideredtobeincompleteinthesense that it provides no understanding of several empirical observations such as: the existence ofthreefamiliesorgenerationsofleptonsandquarks, whichapartfrommasshavesimilar properties;themasshierarchyoftheelementaryparticles,whichformthebasisoftheSM;the natureofthegravitationalinteractionandtheoriginofCPviolation. 22 PWailrl-tbiec-sleet- bPy-IhNy-TsECicHs InthissectionasummaryofthecurrentformulationoftheSMispresented: theelementary particlesandthefundamentalinteractionsoftheSM,andthenthebasicprobleminherentin theSM. 2.1ElementaryparticlesoftheSM IntheSMtheelementaryparticlesthataretheconstituentsofmatterareassumedtobethe sixleptons:electronneutrino(νe),electron(e−),muonneutrino(νμ),muon(μ−),tauneutrino (ντ),tau(τ−)andthesixquarks:up(u),down(d),charmed(c),strange(s),top(t)andbottom (b), together with their antiparticles. These twelve particles are all spin-1 particles and fall naturallyintothreefamiliesorgenerations: (i)νe,e−,u,d;(ii)νμ,μ−,c,s2;(iii)ντ,τ−,t,b. EachgenerationconsistsoftwoleptonswithchargesQ=0andQ=−1andtwoquarkswith charges Q = +2 and Q = −1. Themassesoftheparticlesincreasesignificantlywitheach 3 3 generationwiththepossibleexceptionoftheneutrinos,whoseverysmallmasseshaveyetto bedetermined. In the SM the leptons and quarks are allotted several additive quantum numbers: charge Q, lepton number L, muon lepton number Lμ, tau lepton number Lτ, baryon number A, strangeness S, charm C, bottomness B and topness T. These are given in Table 1. For each particle additive quantum number N, the corresponding antiparticle has the additive quantumnumber−N. particle Q L Lμ Lτ A S C B T νe 0 1 0 0 0 0 0 0 0 e− −1 1 0 0 0 0 0 0 0 νμ 0 1 1 0 0 0 0 0 0 μ− −1 1 1 0 0 0 0 0 0 ντ 0 1 0 1 0 0 0 0 0 τ− −1 1 0 1 0 0 0 0 0 u +2 0 0 0 1 0 0 0 0 3 3 d −1 0 0 0 1 0 0 0 0 3 3 c +2 0 0 0 1 0 1 0 0 3 3 s −1 0 0 0 1 −1 0 0 0 3 3 t +2 0 0 0 1 0 0 0 1 3 3 b −1 0 0 0 1 0 0 −1 0 3 3 Table1.SMadditivequantumnumbersforleptonsandquarks Table1demonstratesthat,exceptforcharge,leptonsandquarksareallotteddifferentkinds ofadditivequantumnumberssothatthisclassificationoftheelementaryparticlesintheSM isnon-unified. The additive quantum numbers Q and A are assumed to be conserved in strong, electromagneticandweakinteractions. TheleptonnumbersL,LμandLτ arenotinvolvedin stronginteractionsbutarestrictlyconservedinbothelectromagneticandweakinteractions. The remainder, S, C, B and T are strictly conserved only in strong and electromagnetic interactionsbutcanundergoachangeofoneunitinweakinteractions. The quarks have an additional additive quantum number called “color charge", which can takethreevaluessothatineffectwehavethreekindsofeachquark,u,d,etc.Theseareoften

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.