ebook img

Particle detection Spinger PDF

464 Pages·2008·16.428 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Particle detection Spinger

Particle Detection with Drift Chambers Particle Acceleration and Detection springer.com TheseriesParticleAccelerationandDetectionisdevotedtomonographtextsdealing withallaspectsofparticleaccelerationanddetectionresearchandadvancedteach- ing.Thescopealsoincludestopicssuchasbeamphysicsandinstrumentationaswell asapplications.Presentationsshouldstronglyemphasizetheunderlyingphysicaland engineeringsciences.Ofparticularinterestare • contributions which relate fundamental research to new applications beyond theimmediaterealmoftheoriginalfieldofresearch • contributionswhichconnectfundamentalresearchintheaforementionedfields tofundamentalresearchinrelatedphysicalorengineeringsciences • conciseaccountsofnewlyemergingimportanttopicsthatareembeddedina broaderframeworkinordertoprovidequickbutreadableaccessofverynew materialtoalargeraudience The books forming this collection will be of importance for graduate students and activeresearchersalike. SeriesEditors: ProfessorAlexanderChao ProfessorTakahikoKondo SLAC KEK 2575SandHillRoad BuildingNo.3,Room319 MenloPark,CA94025 1-1Oho,1-21-2Tsukuba USA 1-31-3Ibaraki305 Japan ProfessorChristianW.Fabjan CERN ProfessorFrancescoRuggiero PPEDivision CERN 1211Genève23 SLDivision Switzerland 1211Genève23 Switzerland ProfessorRolf-DieterHeuer DESY Gebäude1d/25 22603Hamburg Germany · · Walter Blum Werner Riegler Luigi Rolandi Particle Detection with Drift Chambers 123 ProfessorWalterBlum DoctorWernerRiegler MPIfu¨rPhysik CERN Werner-Heisenberg-Institut 1211Geneve23 Fo¨hringerRing6 Switzerland 80805Mu¨nchen [email protected] Germany [email protected] ProfessorLuigiRolandi CERN 1211Geneve23 Switzerland [email protected] ISBN:978-3-540-76683-4 e-ISBN:978-3-540-76684-1 LibraryofCongressControlNumber:2007940836 (cid:2)c 2008Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Coverdesign:WMXDesignGmbH Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com Preface to the First Edition Adriftchamberisanapparatusformeasuringthespacecoordinatesofthetrajectory ofachargedparticle.Thisisachievedbydetectingtheionizationelectronsproduced bythechargedparticleinthegasofthechamberandbymeasuringtheirdrifttimes andarrivalpositionsonsensitiveelectrodes. Whenthemultiwireproportionalchamber,or‘Charpakchamber’asweusedto callit,wasintroducedin1968,itsauthorshadalreadynotedthatthetimeofasignal couldbeusefulforacoordinatedetermination,andfirststudieswithadriftcham- berweremadebyBressani,Charpak,RahmandZupancˇicˇ in1969.Whenthefirst operational drift-chamber system with electric circuitry and readout was built by Walenta,HeintzeandSchu¨rleinin1971,anewinstrumentforparticleexperiments hadappeared.Abroadstudyofthebehaviourofdriftingelectronsingasesbeganin laboratorieswheretherewasinterestinthedetectionofparticles. Diffusionanddriftofelectronsandionsingaseswereatthattimewell-established subjects in their own right. The study of the influence of magnetic fields on these processes was completed in the 1930s and all fundamental equations were con- tained in the article by W.P. Allis in the Encyclopedia of Physics [ALL56]. It did not take very long until the particle physicists learnt to apply the methods of theMaxwell–Boltzmannequationsandoftheelectron-swarmexperimentsthathad been developed for the study of atomic properties. The article by Palladino and Sadoulet [PAL75] recorded some of these methods for use with particle-physics instruments. F.SauligaveanacademictrainingcourseatCERNin1975/76,inordertoinform agrowingnumberofusersofthenewdevices.Hepublishedlecturenotes[SAU77], whichwereamajorsourceofinformationforparticlephysicistswhobegantowork withdriftchambers. When the authors of this book began to think about a large drift chamber for theALEPHexperiment,werealizedthattherewasnosingletexttointroduceusto thosequestionsaboutdriftchambersthatwouldallowustodeterminetheirultimate limits of performance. We wanted to have a text, not on the technical details, but on the fundamental processes, so that a judgement about the various alternatives for building a drift chamber would be on solid ground. We needed some insight v vi PrefacetotheFirstEdition into the consequences of different geometries and how to distinguish between the behaviour of different gases, not so much a complete table of their properties. We wantedtounderstandonwhattrajectoriestheionizationelectronswoulddrifttothe proportionalwiresandtowhatextentthetrackswouldchangetheirshape. Pathstotheliteraturewerealsorequired–justafewessentialones–sothatan entrypointtoeveryimportantsubjectexisted;theywouldnothavetobeacompre- hensivereviewof‘everything’. In some sense we have written the book that we wanted at that time. The text also contains a number of calculations that we made concerning the statistics of ionization and the fundamental limits of measuring accuracy that result from it, geometrical fits to curved tracks, and electrostatics of wire grids and field cages. SeveralexperimentsthatweundertookduringtheconstructiontimeoftheALEPH experimentfoundtheirwayintothebook;theydealmainlywiththedriftanddiffu- sionofelectronsingasesundervariousfieldconditions,butalsowiththestatistics oftheionizationandamplificationprocesses. Thebookisnonethelessincompleteinsomerespects.Weareawarethatitlacks achapteronelectronicsignalprocessing.Alsosomeofthecalculationsarenotyet backedupindetailbymeasurementsastheywilleventuallyhavetobe.Especially theparameterN oftheionizationprocesswhichgovernstheachievableaccuracy eff shouldbeaccuratelyknownandsupportedbymeasurementswithinterestinggases. We hope that workers in this field will direct their efforts to such questions. We wouldwelcomecommentsaboutanyotherimportantomissions. It was our intention to make the book readable for students who are interested in particle detectors. Therefore, we usually tried to explain in some detail the ar- gumentsthatleaduptoafinalresult.Onemaysaythatthebookrepresentsacross betweenamonographandanadvancedtextbook.Thosewhorequireacompendious catalogueofexistingorproposeddriftchambersmayfindusefultheproceedingsof thetriannualViennaWireChamberConferences[VIE]oroftheannualIEEESym- posiaonInstrumentationforNuclearScience[IEE]. Partsofthematerialhavebeenpresentedinsummerschoolsandguestlectures, andwethankH.D.Dahmen(HerbstschuleMariaLaach),E.Fernandez(Universita Autonoma,Barcelona)andL.Bertocchi(ICTP,Trieste)fortheirhospitality. We thank our colleagues from the ALEPH TPC group, and especially J. May andF.Ragusa,formanystimulatingdiscussionsontheissuesofthisbook.Weare alsoobligedtoH.Spitzer(Hamburg)whoreadandcommentedonanearlyversion of the manuscript. Special thanks are extended to Mrs. Heininger in Munich who producedmostofthedrawings. Geneva W.Blum 1April1993 L.Rolandi Preface to the Second Edition Thefirsteditionhascontinuouslyservedmanystudentsandresearchersinthefield. Now we have enlarged and improved the book, essentially in three ways: (1) The chapter on electronic signal processing was added, and (2) the chapter on the cre- ation of the signal was rewritten and based on the principle of current induction. This was made possible because our team was complemented with a new young co-author(W.R.).(3)Alsotherearevariousmodernizationsthroughoutthebookin- cludingsomeoftherecentchamberscapabletomeasuretracksatveryhighfluences thatonecouldnotimagine15yearsago.Fourofthechapterswereleftuntouched. Thedevelopmentofdriftchambersinthelast15yearswasdrivenbytheideathat theirperformanceshouldbepushedtowardsthelimitsofthelawsofphysics.The concept of the book matches very well this trend because it is the basic principles ofdriftchambersratherthantheirtechnicaldesignsolutionsthatareinfocus.The mostmoderndesignsolutions,amongthemtheonesdevelopedfortheexperiments of the Large Hadron Collider, can be found e.g. in the proceedings of the IEEE Symposia[IEE]andoftheViennaWireChamberConferences[VIE]. During the last two decades, the development and optimization of drift cham- bershasincreasinglyreliedonsimulationprograms,whichinsomesense’encode’ thephysicsprocessesdescribedinthisbook.TheprogramGARFIELD,writtenby Rob Veenhof, is the most widely used tool for drift chamber simulation. It allows calculation of electric fields, electron and ion drift lines, induced signals, electro- staticwiredisplacementsandmanymorefeaturesofdriftchambers.Forcalculation oftheprimaryionizationoffastparticlesingases,theprogramHEED,writtenby Igor Smirnov, is widely used. A very popular program for calculation of electron transport properties in different gas mixtures is the program MAGBOLTZ, writ- tenbySteveBiagi.MAGBOLTZandHEEDaredirectlyinterfacedtoGARFIELD, whichthereforeallowsacompletesimulationofthedriftchamberprocesses,from thepassageofthechargedparticletothedetectoroutputsignal.Clearlyathorough understanding ofdriftchambers, which issubject of thisbook, isa necessary pre- conditionforefficientuseofthesesimulationprograms. Despite the development of the fine grained silicon detectors which now out- perform the wire chambers near the interaction point, the large detector volumes vii viii PrefacetotheSecondEdition surrounding modern experiments have to rely on drift chambers because of their simplicity and also because their measurement accuracy in relation to their size is better than it is in any other instrument. Time Projection Chambers with electron drift lengths up to 2.5m are the most important tools for studying heavy ion col- lisions, because of their very low material budget, channel number economy and particle identification capabilities. TPCs are also studied as principle detectors for futureelectroncolliders.36yearsafterthefirstworkingdriftchamber,theseinstru- mentsarestillgoingstrong. Geneva W.Blum April2008 W.Riegler L.Rolandi References [ALL56] W.P.Allis,Motionsofionsandelectrons,inHandbuchderPhysik,ed.byS.Flu¨gge (Springer,Berlin1956)Vol.XXI,p.383 [IEE] Thesymposiaareusuallyheldinthefallofeveryyearandarepublishedinconsec- utivevolumesoftheIEEETransactionsinNuclearScienceinthefirstissueofthe followingyear [PAL75] V.PalladinoandB.Sadoulet,Applicationofclassicaltheoryofelectronsingasesto driftproportionalchambers,Nucl.Instrum.Methods128,323(1975) [SAU77] F.Sauli,Principlesofoperationofmultiwireproportionalanddriftchambers,Lec- turesgivenintheacademictrainingprogrammeofCERN1975–76(CERN77-09, Geneva1977),inExperimentalTechniquesinHighEnergyPhysics,ed.byT.Ferbel (Addison-Wesley,MenloPark1987) [VIE] The Vienna Wire Chamber Conferences were held in February of the years 1978, 1980,1983,1986,1989,1992,1995,1998,2001,2004,2007,andtheywerepublished mostlythesameyearsinNuclearInstrumentsandMethodsinthefollowingvolumes: 135,176,217,A252,A283,A323,A367,A419,A478,A535.Since2001they arecalled ViennaConferenceonInstrumentation. Contents 1 GasIonizationbyChargedParticlesandbyLaserRays ............ 1 1.1 GasIonizationbyFastChargedParticles ....................... 1 1.1.1 IonizingCollisions................................... 1 1.1.2 DifferentIonizationMechanisms ....................... 3 1.1.3 AverageEnergyRequiredtoProduceOneIonPair ........ 4 1.1.4 TheRangeofPrimaryElectrons........................ 7 1.1.5 TheDifferentialCross-sectiondσ/dE................... 7 1.2 CalculationofEnergyLoss .................................. 9 1.2.1 ForceonaChargeTravellingThroughaPolarizableMedium 9 1.2.2 ThePhoto-AbsorptionIonizationModel................. 11 1.2.3 BehaviourforLargeE................................ 15 1.2.4 Cluster-SizeDistribution.............................. 15 1.2.5 IonizationDistributiononaGivenTrackLength .......... 16 1.2.6 VelocityDependenceoftheEnergyLoss ................ 24 1.2.7 TheBethe–BlochFormula ............................ 29 1.2.8 EnergyDepositedonaTrack–RestrictedEnergyLoss .... 32 1.2.9 LocalizationofChargeAlongtheTrack ................. 35 1.2.10 AMeasurementofN ............................... 37 eff 1.3 GasIonizationbyLaserRays ................................ 38 1.3.1 ThenthOrderCross-SectionEquivalent ................. 38 1.3.2 RateEquationsforTwo-PhotonIonization ............... 39 1.3.3 DependenceofLaserIonizationonWavelength........... 42 1.3.4 Laser-BeamOptics................................... 44 References..................................................... 46 2 TheDriftofElectronsandIonsinGases.......................... 49 2.1 AnEquationofMotionwithFriction .......................... 49 2.1.1 CaseofENearlyParalleltoB ......................... 52 2.1.2 CaseofEOrthogonaltoB ............................ 52 2.2 TheMicroscopicPicture..................................... 53 2.2.1 DriftofElectrons .................................... 53 ix x Contents 2.2.2 DriftofIons ........................................ 56 2.2.3 InclusionofMagneticField ........................... 64 2.2.4 Diffusion .......................................... 67 2.2.5 ElectricAnisotropy .................................. 70 2.2.6 MagneticAnisotropy ................................. 72 2.2.7 ElectronAttachment ................................. 75 2.3 ResultsfromtheCompleteMicroscopicTheory ................. 79 2.3.1 DistributionFunctionofVelocities...................... 79 2.3.2 Drift ............................................... 81 2.3.3 InclusionofMagneticField ........................... 82 2.3.4 Diffusion ........................................... 83 2.4 Applications............................................... 83 2.4.1 Determinationofσ(ε)andλ(ε)fromDriftMeasurement .. 83 2.4.2 Example:Argon–MethaneMixture ..................... 85 2.4.3 Experimental Check of the Universal Drift Velocity forLargeωτ........................................ 88 2.4.4 AMeasurementofTrackDisplacementasaFunction ofMagneticField.................................... 89 2.4.5 AMeasurementoftheMagneticAnisotropyofDiffusion... 89 2.4.6 Calculated and Measured Electron Drift Velocities inCrossedElectricandMagneticFields ................. 92 References..................................................... 94 3 ElectrostaticsofTubes,WireGridsandFieldCages................ 97 3.1 PerfectandImperfectDriftTubes ............................. 98 3.1.1 PerfectDriftTube.................................... 99 3.1.2 DisplacedWire...................................... 99 3.2 WireGrids ................................................105 3.2.1 The Electric Field of an Ideal Grid of Wires Parallel toaConductingPlane ................................105 3.2.2 Superposition of the Electric Fields of Several Grids andofaHigh-VoltagePlane ...........................108 3.2.3 Matching the Potential of the Zero Grid and of the ElectrodesoftheFieldCage ...........................110 3.3 AnIonGateintheDriftSpace................................112 3.3.1 CalculationofTransparency ...........................113 3.3.2 Setting of the Gating Grid Potential with Respect totheZero-GridPotential .............................118 3.4 FieldCages ...............................................118 3.4.1 TheDifficultyofFreeDielectricSurfaces................119 3.4.2 IrregularitiesintheFieldCage .........................121 References.....................................................124

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.