Applied Mathematical Sciences Volume 115 Editors S.S.Antman J.E.Marsden DepartmentofMathematics ControlandDynamicalSystems, and 107-81 InstituteforPhysical CaliforniaInstituteofTechnology ScienceandTechnology Pasadena,CA91125 UniversityofMaryland USA CollegePark,MD20742-4015 [email protected] USA [email protected] L.Sirovich LaboratoryofAppliedMathematics DepartmentofBiomathematical Sciences MountSinaiSchoolofMedicine NewYork,NY10029-6574 [email protected] Advisors L.Greengard P.Holmes J.Keener J.Keller R.Laubenbacher B.J.Matkowsky A.Mielke C.S.Peskin K.R.Sreenivasan A.Stevens A.Stuart Forfurthervolumes: http://www.springer.com/series/34 Michael E. Taylor Partial Differential Equations I Basic Theory Second Edition ABC MichaelE.Taylor DepartmentofMathematics UniversityofNorthCarolina ChapelHill,NC27599 USA [email protected] ISSN0066-5452 ISBN978-1-4419-7054-1 e-ISBN978-1-4419-7055-8 DOI10.1007/978-1-4419-7055-8 SpringerNewYorkDordrechtHeidelbergLondon LibraryofCongressControlNumber:2010937758 Mathematics Subject Classification (2010): 35A01, 35A02, 35J05, 35J25, 35K05, 35L05, 35Q30, 35Q35,35S05 (cid:2)c SpringerScience+BusinessMedia,LLC1996,2011 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork, NY 10013, USA), except for brief excerpts inconnection with reviews orscholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software,orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To mywifeanddaughter,JaneHawkins andDianeTaylor Contents ContentsofVolumesIIandIII ................................................ xi Preface............................................................................ xiii 1 BasicTheoryofODEandVectorFields................................. 1 1 Thederivative .......................................................... 3 2 FundamentallocalexistencetheoremforODE....................... 9 3 Inversefunctionandimplicitfunctiontheorems...................... 12 4 Constant-coefficientlinearsystems;exponentiationofmatrices .... 16 5 Variable-coefficientlinearsystemsofODE:Duhamel’sprinciple... 26 6 Dependenceofsolutionsoninitialdataandonotherparameters.... 31 7 Flowsandvectorfields................................................. 35 8 Liebrackets............................................................. 40 9 Commutingflows;Frobenius’stheorem.............................. 43 10 Hamiltoniansystems................................................... 47 11 Geodesics............................................................... 51 12 Variationalproblemsandthestationaryactionprinciple............. 59 13 Differentialforms...................................................... 70 14 Thesymplecticformandcanonicaltransformations................. 83 15 First-order,scalar,nonlinearPDE..................................... 89 16 Completelyintegrablehamiltoniansystems.......................... 96 17 Examplesofintegrablesystems;centralforceproblems.............101 18 Relativisticmotion.....................................................105 19 Topologicalapplicationsofdifferentialforms........................110 20 Criticalpointsandindexofavectorfield.............................118 A Nonsmoothvectorfields...............................................122 References..............................................................125 2 TheLaplaceEquationandWaveEquation .............................127 1 Vibratingstringsandmembranes......................................129 2 Thedivergenceofavectorfield.......................................140 3 Thecovariantderivativeanddivergenceoftensorfields.............145 4 TheLaplaceoperatoronaRiemannianmanifold ....................153 5 Thewaveequationonaproductmanifoldandenergyconservation 156 6 Uniquenessandfinitepropagationspeed .............................162 7 Lorentzmanifoldsandstress-energytensors .........................166 8 Moregeneralhyperbolicequations;energyestimates................172 viii Contents 9 Thesymbolofadifferentialoperatorandageneral Green–Stokesformula.................................................176 10 TheHodgeLaplacianonk-forms.....................................180 11 Maxwell’sequations...................................................184 References..............................................................194 3 FourierAnalysis,Distributions, andConstant-CoefficientLinearPDE ...................................197 1 Fourierseries...........................................................198 2 Harmonicfunctionsandholomorphicfunctionsintheplane........209 3 TheFouriertransform..................................................222 4 Distributionsandtempereddistributions..............................230 5 Theclassicalevolutionequations .....................................244 6 Radialdistributions,polarcoordinates,andBesselfunctions........263 7 ThemethodofimagesandPoisson’ssummationformula...........273 8 Homogeneousdistributionsandprincipalvaluedistributions .......278 9 Ellipticoperators.......................................................286 10 Localsolvabilityofconstant-coefficientPDE ........................289 11 ThediscreteFouriertransform ........................................292 12 ThefastFouriertransform.............................................301 A ThemightyGaussianandthesublimegammafunction..............306 References..............................................................312 4 SobolevSpaces..............................................................315 1 SobolevspacesonRn..................................................315 2 Thecomplexinterpolationmethod....................................321 3 Sobolevspacesoncompactmanifolds................................328 4 Sobolevspacesonboundeddomains .................................331 5 TheSobolevspacesHs.(cid:2)/ ...........................................338 0 6 TheSchwartzkerneltheorem..........................................345 7 Sobolevspacesonroughdomains.....................................349 References..............................................................351 5 LinearEllipticEquations..................................................353 1 ExistenceandregularityofsolutionstotheDirichletproblem ......354 2 Theweakandstrongmaximumprinciples............................364 3 TheDirichletproblemontheballinRn ..............................373 4 TheRiemannmappingtheorem(smoothboundary).................379 5 TheDirichletproblemonadomainwitharoughboundary.........383 6 TheRiemannmappingtheorem(roughboundary)...................398 7 TheNeumannboundaryproblem .....................................402 8 TheHodgedecompositionandharmonicforms......................410 9 NaturalboundaryproblemsfortheHodgeLaplacian................421 10 Isothermalcoordinatesandconformalstructuresonsurfaces .......438 11 Generalellipticboundaryproblems...................................441 12 Operatorpropertiesofregularboundaryproblems...................462 Contents ix A Spacesofgeneralizedfunctionsonmanifoldswithboundary.......471 B TheMayer–VietorissequenceindeRhamcohomology..............475 References..............................................................478 6 LinearEvolutionEquations...............................................481 1 Theheatequationandthewaveequationonboundeddomains.....482 2 Theheatequationandwaveequationonunboundeddomains ......490 3 Maxwell’sequations...................................................496 4 TheCauchy–Kowalewskytheorem ...................................499 5 Hyperbolicsystems ....................................................504 6 Geometricaloptics.....................................................510 7 Theformationofcaustics..............................................518 8 Boundarylayerphenomenafortheheatsemigroup..................535 A SomeBanachspacesofharmonicfunctions..........................541 B Thestationaryphasemethod ..........................................543 References..............................................................545 A OutlineofFunctionalAnalysis............................................549 1 Banachspaces..........................................................549 2 Hilbertspaces ..........................................................556 3 Fre´chetspaces;locallyconvexspaces.................................561 4 Duality..................................................................564 5 Linearoperators........................................................571 6 Compactoperators.....................................................579 7 Fredholmoperators ....................................................593 8 Unboundedoperators ..................................................596 9 Semigroups.............................................................603 References..............................................................615 B Manifolds,VectorBundles,andLieGroups.............................617 1 Metricspacesandtopologicalspaces.................................617 2 Manifolds...............................................................622 3 Vectorbundles..........................................................624 4 Sard’stheorem..........................................................626 5 Liegroups ..............................................................627 6 TheCampbell–Hausdorffformula ....................................630 7 RepresentationsofLiegroupsandLiealgebras......................632 8 RepresentationsofcompactLiegroups...............................636 9 RepresentationsofSU(2)andrelatedgroups.........................641 References..............................................................647 Index..............................................................................649