ebook img

Partial differential equations PDF

673 Pages·2011·5.587 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Partial differential equations

Applied Mathematical Sciences Volume 115 Editors S.S.Antman J.E.Marsden DepartmentofMathematics ControlandDynamicalSystems, and 107-81 InstituteforPhysical CaliforniaInstituteofTechnology ScienceandTechnology Pasadena,CA91125 UniversityofMaryland USA CollegePark,MD20742-4015 [email protected] USA [email protected] L.Sirovich LaboratoryofAppliedMathematics DepartmentofBiomathematical Sciences MountSinaiSchoolofMedicine NewYork,NY10029-6574 [email protected] Advisors L.Greengard P.Holmes J.Keener J.Keller R.Laubenbacher B.J.Matkowsky A.Mielke C.S.Peskin K.R.Sreenivasan A.Stevens A.Stuart Forfurthervolumes: http://www.springer.com/series/34 Michael E. Taylor Partial Differential Equations I Basic Theory Second Edition ABC MichaelE.Taylor DepartmentofMathematics UniversityofNorthCarolina ChapelHill,NC27599 USA [email protected] ISSN0066-5452 ISBN978-1-4419-7054-1 e-ISBN978-1-4419-7055-8 DOI10.1007/978-1-4419-7055-8 SpringerNewYorkDordrechtHeidelbergLondon LibraryofCongressControlNumber:2010937758 Mathematics Subject Classification (2010): 35A01, 35A02, 35J05, 35J25, 35K05, 35L05, 35Q30, 35Q35,35S05 (cid:2)c SpringerScience+BusinessMedia,LLC1996,2011 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork, NY 10013, USA), except for brief excerpts inconnection with reviews orscholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software,orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To mywifeanddaughter,JaneHawkins andDianeTaylor Contents ContentsofVolumesIIandIII ................................................ xi Preface............................................................................ xiii 1 BasicTheoryofODEandVectorFields................................. 1 1 Thederivative .......................................................... 3 2 FundamentallocalexistencetheoremforODE....................... 9 3 Inversefunctionandimplicitfunctiontheorems...................... 12 4 Constant-coefficientlinearsystems;exponentiationofmatrices .... 16 5 Variable-coefficientlinearsystemsofODE:Duhamel’sprinciple... 26 6 Dependenceofsolutionsoninitialdataandonotherparameters.... 31 7 Flowsandvectorfields................................................. 35 8 Liebrackets............................................................. 40 9 Commutingflows;Frobenius’stheorem.............................. 43 10 Hamiltoniansystems................................................... 47 11 Geodesics............................................................... 51 12 Variationalproblemsandthestationaryactionprinciple............. 59 13 Differentialforms...................................................... 70 14 Thesymplecticformandcanonicaltransformations................. 83 15 First-order,scalar,nonlinearPDE..................................... 89 16 Completelyintegrablehamiltoniansystems.......................... 96 17 Examplesofintegrablesystems;centralforceproblems.............101 18 Relativisticmotion.....................................................105 19 Topologicalapplicationsofdifferentialforms........................110 20 Criticalpointsandindexofavectorfield.............................118 A Nonsmoothvectorfields...............................................122 References..............................................................125 2 TheLaplaceEquationandWaveEquation .............................127 1 Vibratingstringsandmembranes......................................129 2 Thedivergenceofavectorfield.......................................140 3 Thecovariantderivativeanddivergenceoftensorfields.............145 4 TheLaplaceoperatoronaRiemannianmanifold ....................153 5 Thewaveequationonaproductmanifoldandenergyconservation 156 6 Uniquenessandfinitepropagationspeed .............................162 7 Lorentzmanifoldsandstress-energytensors .........................166 8 Moregeneralhyperbolicequations;energyestimates................172 viii Contents 9 Thesymbolofadifferentialoperatorandageneral Green–Stokesformula.................................................176 10 TheHodgeLaplacianonk-forms.....................................180 11 Maxwell’sequations...................................................184 References..............................................................194 3 FourierAnalysis,Distributions, andConstant-CoefficientLinearPDE ...................................197 1 Fourierseries...........................................................198 2 Harmonicfunctionsandholomorphicfunctionsintheplane........209 3 TheFouriertransform..................................................222 4 Distributionsandtempereddistributions..............................230 5 Theclassicalevolutionequations .....................................244 6 Radialdistributions,polarcoordinates,andBesselfunctions........263 7 ThemethodofimagesandPoisson’ssummationformula...........273 8 Homogeneousdistributionsandprincipalvaluedistributions .......278 9 Ellipticoperators.......................................................286 10 Localsolvabilityofconstant-coefficientPDE ........................289 11 ThediscreteFouriertransform ........................................292 12 ThefastFouriertransform.............................................301 A ThemightyGaussianandthesublimegammafunction..............306 References..............................................................312 4 SobolevSpaces..............................................................315 1 SobolevspacesonRn..................................................315 2 Thecomplexinterpolationmethod....................................321 3 Sobolevspacesoncompactmanifolds................................328 4 Sobolevspacesonboundeddomains .................................331 5 TheSobolevspacesHs.(cid:2)/ ...........................................338 0 6 TheSchwartzkerneltheorem..........................................345 7 Sobolevspacesonroughdomains.....................................349 References..............................................................351 5 LinearEllipticEquations..................................................353 1 ExistenceandregularityofsolutionstotheDirichletproblem ......354 2 Theweakandstrongmaximumprinciples............................364 3 TheDirichletproblemontheballinRn ..............................373 4 TheRiemannmappingtheorem(smoothboundary).................379 5 TheDirichletproblemonadomainwitharoughboundary.........383 6 TheRiemannmappingtheorem(roughboundary)...................398 7 TheNeumannboundaryproblem .....................................402 8 TheHodgedecompositionandharmonicforms......................410 9 NaturalboundaryproblemsfortheHodgeLaplacian................421 10 Isothermalcoordinatesandconformalstructuresonsurfaces .......438 11 Generalellipticboundaryproblems...................................441 12 Operatorpropertiesofregularboundaryproblems...................462 Contents ix A Spacesofgeneralizedfunctionsonmanifoldswithboundary.......471 B TheMayer–VietorissequenceindeRhamcohomology..............475 References..............................................................478 6 LinearEvolutionEquations...............................................481 1 Theheatequationandthewaveequationonboundeddomains.....482 2 Theheatequationandwaveequationonunboundeddomains ......490 3 Maxwell’sequations...................................................496 4 TheCauchy–Kowalewskytheorem ...................................499 5 Hyperbolicsystems ....................................................504 6 Geometricaloptics.....................................................510 7 Theformationofcaustics..............................................518 8 Boundarylayerphenomenafortheheatsemigroup..................535 A SomeBanachspacesofharmonicfunctions..........................541 B Thestationaryphasemethod ..........................................543 References..............................................................545 A OutlineofFunctionalAnalysis............................................549 1 Banachspaces..........................................................549 2 Hilbertspaces ..........................................................556 3 Fre´chetspaces;locallyconvexspaces.................................561 4 Duality..................................................................564 5 Linearoperators........................................................571 6 Compactoperators.....................................................579 7 Fredholmoperators ....................................................593 8 Unboundedoperators ..................................................596 9 Semigroups.............................................................603 References..............................................................615 B Manifolds,VectorBundles,andLieGroups.............................617 1 Metricspacesandtopologicalspaces.................................617 2 Manifolds...............................................................622 3 Vectorbundles..........................................................624 4 Sard’stheorem..........................................................626 5 Liegroups ..............................................................627 6 TheCampbell–Hausdorffformula ....................................630 7 RepresentationsofLiegroupsandLiealgebras......................632 8 RepresentationsofcompactLiegroups...............................636 9 RepresentationsofSU(2)andrelatedgroups.........................641 References..............................................................647 Index..............................................................................649

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.