ebook img

Parametric Geometry of Curves and Surfaces: Architectural Form-Finding PDF

293 Pages·2021·9.596 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Parametric Geometry of Curves and Surfaces: Architectural Form-Finding

Mathematics and the Built Environment 5 Alberto Lastra Parametric Geometry of Curves and Surfaces Architectural Form-Finding Mathematics and the Built Environment Volume 5 SeriesEditors MichaelOstwald , BuiltEnvironment,UniversityofNew SouthWales, Sydney, NSW,Australia KimWilliams,KimWilliamsBooks,Torino,Italy EditedbyKimWilliamsandMichaelOstwald. Throughout history a rich and complex relationship has developed between mathematicsandthevariousdisciplinesthatdesign,analyse,constructandmaintain thebuiltenvironment. This book series seeks to highlight the multifaceted connections between the disciplinesofmathematicsandarchitecture,throughthepublicationofmonographs thatdevelopclassicalandcontemporarymathematicalthemes–geometry,algebra, calculation,modelling.These themesmay be expandedin architectureof anyera, culture or style, from Ancient Greek and Rome, through the Renaissance and Baroque,toModernismandcomputationalandparametricdesign.Selectedaspects ofurbandesign,architecturalconservationandengineeringdesignthatarerelevant forarchitecturemayalsobeincludedintheseries. Regardlessofwhetherbooksinthisseriesarefocusedonspecificarchitecturalor mathematicalthemes,theintentionistosupportdetailedandrigorousexplorations ofthehistory,theoryanddesignofthemathematicalaspectsofbuiltenvironment. Moreinformationaboutthisseriesathttp://www.springer.com/series/15181 Alberto Lastra Parametric Geometry of Curves and Surfaces Architectural Form-Finding AlbertoLastra DepartamentodeFísicayMatemáticas UniversidaddeAlcalá AlcaládeHenares,Spain ISSN2512-157X ISSN2512-1561 (electronic) MathematicsandtheBuiltEnvironment ISBN978-3-030-81316-1 ISBN978-3-030-81317-8 (eBook) https://doi.org/10.1007/978-3-030-81317-8 MathematicsSubjectClassification:53A04,53A05,00A67 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewhole orpart ofthematerial isconcerned, specifically therights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Thisbookis published underthe imprint Birkhäuser, www.birkhauser-science.com, bythe registered companySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Amis abuelos Preface The parametric aspects of curves and surfaces have been studied from the point of view of differential geometry through history. Indeed, many different studies havebeendevelopedsince the nineteenthcenturyon thisdiscipline,which canbe found in detail in texts such as do Carmo (1976), Tapp (2016), Umehara et al. (2017). Apart from the theoretical relation of a curve (or surface) to any of its parametrizations, one can go a step further and describe it from a practical point of view. The geometric scheme of a curve or a surface has provided inspiration for numerous works of art and architecture. These creations not only respond to physicalneedssuchascertainacousticproperties,lighting,etc.,butalsotoahuman desire to createstructureswith simple geometricshapes. Thisbooksdescribesthe classicaltheoryofparametrictoolsinthegeometryofcurvesandsurfaceswithan emphasisonapplicationstoarchitecture. Thisbookisbasedonadecadeofteachingaclassongeometryinarchitectural studies at Universidad de Alcalá (Spain). This class, “Drawing Workshop II”, combinedarchitectural design and mathematics. Nevertheless, it can also be used as a text on differential geometry for mathematics students, or a basic reference onmathematicsforarchitectsanddesigners(especiallythoseworkingwithCAD). I hope that the latter will find this text useful and interesting, shedding light on thetheoreticalaspectsoftheirwork,aswellasontheapplicabilitytoarchitecture. Thetechniquesusedintheexamplesprovidedinthetextserveasthemathematical realizationofmanygeometrictoolsusedinCADprogramssuchastheconstruction of an helix,extrusions,revolutionor ruledsurfaces, projections,and manyothers. I also provide algorithms related to some of the geometric objects and show how differentactionsontheparametrizationschangethenatureofthegeometricobject itself. These mathematical tools are important to understand the structure of a geometricobjectandtoknowhowtomodifyitconsciously. Thestructureofthebookisasfollows. The first chapter is devoted to the study of parametrization of plane curves, with special focus on conics. In this chapter, the implicitation and approximation ofcurvesisalsoillustratedwithgeometricexamples. vii viii Preface Fig.1 Structureofthebook Thesecondchapterdescribesaparalleltheoryonspacecurves,andtheappear- anceofsuchcurvesinarchitecture.Geometrictransformationsareperformedona spacecurve,makingexplicitthemathematicsbehindusualactionsincurvedesign. The third and fourthchaptersconsider,respectively,generalsurfacesand other particular classes of surfaces which are of widespread use. The examples range fromclassic surfacesin architectureto the parametrizationof such familiesor the constructionofotherwhichremainofparticularinterestregardingtheirproperties. Moreprecisely,wefocusonsomecurveslyingonsurfacesandontheintersection ofcurves.Surfacessuchasquadrics,ruledsurfaces,surfacesofrevolution,minimal anddevelopablesurfacesarealsostudiedandappliedtoarchitecturalelements. ThestructureofthebookisillustratedinFig.1. Themathematicalprerequisitesforthisbookarefirstcoursesintopology,linear algebra and calculus (both single and multi- variable), as amply covered in the books Salas et al. (2003), Marsden and Tromba (2012), and Lang (1986); Strang (1993). For completeness, we have included two appendices covering knowledge thatwillbeusefulforunderstandingthematerial. ThefiguresofgeometricobjectshavebeencreatedwithGeogebrasoftware. I want to express my gratitude to everyone who was involved in this class, speciallytoProf.ManueldeMiguel,whointroducedmetotheworldofarchitecture. I also want to express my gratitude to Remi Lodh, who has guided me on its publicationwithhighprofessionalismandalsotoKimWilliamsforherenthusiasm, professionalismandeffortintherevisionofthemanuscript,andalsogivingrelevant andinterestingdetails. Suggested FurtherReading The following sources are suggested to interested readers seeking additional material (AAG 2008, 2010, 2013, 2014, 2016, 2018; Bridges 2003, 2004, 2008, 2011,2012,2014,2016,2018). AlcaládeHenares,Spain AlbertoLastra 2021 Contents 1 ParametrizationsandPlaneCurves ....................................... 1 1.1 PlaneCurvesandParametrizations.................................... 2 1.2 SomeClassicCurvesinArchitecture.................................. 9 1.3 SomeElementsofRegularPlaneCurves.............................. 15 1.4 Conics................................................................... 26 1.5 SomeConicsinArchitecture........................................... 38 1.6 OntheImplicitationandParametrizationofCurves.................. 41 1.7 ApproximationandInterpolationofCurves........................... 51 1.8 SuggestedExercises.................................................... 55 2 ParametrizationsandSpaceCurves....................................... 59 2.1 SpaceCurvesandParametrizations.................................... 59 2.2 SomeElementsofRegularSpaceCurves............................. 66 2.3 SomeClassicSpaceCurvesinArchitecture .......................... 87 2.4 RigidTransformationsinR3........................................... 90 2.5 SomeTransformationsonaHelix ..................................... 96 2.6 SuggestedExercises.................................................... 101 3 ParametrizationsandRegularSurfaces................................... 103 3.1 SurfacesandParametrizations......................................... 103 3.2 SomeClassicSurfacesinArchitecture................................ 116 3.3 ProjectionsofSurfacesontoPlanes ................................... 123 3.4 CurvesinSurfacesandIntersectionofSurfaces...................... 126 3.5 SuggestedExercises.................................................... 136 4 SpecialFamiliesofSurfaces ................................................ 139 4.1 RuledSurfaces.......................................................... 139 4.2 SomeSubfamiliesofRuledSurfaces.................................. 148 4.3 ParametrizationofSomeRuledSurfaces.............................. 154 4.4 SurfacesofRevolution ................................................. 160 4.5 QuadricSurfaces........................................................ 169 4.6 QuadricsRevisited:SomeExamplesinArchitecture................. 187 ix x Contents 4.7 Curvature:MinimalandDevelopableSurfaces....................... 190 4.7.1 FinalComments ............................................... 200 4.8 SuggestedExercises.................................................... 201 A CoordinateSystems.......................................................... 205 B MathematicalToolKit....................................................... 213 B.1 IntroductiontoLinearAlgebra......................................... 213 B.1.1 SystemsofLinearEquations.................................. 213 B.1.2 VectorSpaces .................................................. 214 B.1.3 EuclideanVectorSpaces....................................... 215 B.1.4 Diagonalization:EigenvaluesandEigenvectors.............. 215 B.2 RealFunctionsofOneVariable........................................ 216 B.3 FunctionsofSeveralRealVariables................................... 219 B.4 DifferentialEquationsandSystemsofDifferentialEquations....... 221 C SolutiontotheSuggestedExercises........................................ 223 C.1 Chapter1................................................................ 223 C.2 Chapter2................................................................ 235 C.3 Chapter3................................................................ 245 C.4 Chapter4................................................................ 249 References......................................................................... 267 Index............................................................................... 273

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.