P1.T4.Valuation Allen, Chapters 2 & 3 Bionic Turtle FRM Video Tutorials By: David Harper CFA, FRM, CIPM Note: This tutorial is for paid members only. You know who you are. Anybody else is using an illegal copy and also violates GARP’s ethical standards. P1.T4.Valuation Allen, Chapters2 & 3 P1.T4.Valuation Allen, Chapters 2 & 3 Linda Allen, Jacob Boudoukh and Anthony Saunders, Understanding Market, Credit and Operational Risk: The Value at Risk Approach • Chapter 2: Quantifying Volatility in VaR Models • Chapter 3, Putting VaR to Work 2 P1.T4.Valuation Allen, Chapters2 & 3 Related Learning Spreadsheets Exam Relevance Workbook (XLS not topic) T4.Allen.2 VaR High Portfolio VaR (incl Jorion’s 3-asset delta normal VaR) Medium Taylor Series Approx. (with BSM option value) Low Structured Monte Carlo Sim (With Cholesky decomposition) 3 Chapter 2: Quantifying Volatility in VaR Models P1.T4. Allen, Chapter 2: QuantifiyingVolatility in VaRModels Discuss how asset return distributions tend to deviate from the normal distribution. … Normal Actual returns Symmetrical Skewed “Normal” Tails Fat-tailed (leptokurtosis) Stable Unstable (time-varying) -4 -3 -2 -1 0 1 2 3 4 5 P1.T4. Allen, Chapter 2: QuantifiyingVolatility in VaRModels Discuss how asset return distributions tend to deviate from the normal distribution. … AAccttuuaall rreettuurrnnss:: 11.. SSkkeewweedd 22.. FFaatt--ttaaiilleedd ((kkuurrttoossiiss>>33)) 4.5% 33rrdd MMoommeenntt == 33.. UUnnssttaabbllee SSkkeeww •• 33 4.0% 3.5% 3.0% 2.5% 44tthh MMoommeenntt == 2.0% 22nndd VVaarriiaannccee 1.5% kkuurrttoossiiss •• 44 ““ssccaallee”” 1.0% 0.5% 11sstt mmoommeenntt 0.0% -3 -2 -1 MM0eeaann 1 2 3 ““llooccaattiioonn”” 6 P1.T4. Allen, Chapter 2: QuantifiyingVolatility in VaRModels Explain potential reasons for the existence of fat tails in a return distribution … 1. Conditional mean is time-varying – Unlikely given assumption of efficient markets (says L. Allen et al) 2. Conditional volatility is time-varying – This is the likely explanation! -4 -3 -2 -1 0 1 2 3 4 7 P1.T4. Allen, Chapter 2: QuantifiyingVolatility in VaRModels … and discuss the implications fat tails have on analysis of return distributions. NNoorrmmaall ddiissttrriibbuuttiioonn ssaayyss:: --1100%% @@ 9955tthh %%iillee -3 -2 -1 0 1 2 3 BBuutt wwhhaatt iiff rreeaallllyy iitt’’ss mmoorree lliikkee -- 1155%% ??!! 8 P1.T4. Allen, Chapter 2: QuantifiyingVolatility in VaRModels Distinguish between conditional and unconditional distributions. • A condition distribution depends on the information set; e.g., economy, market shock Same Distribution =Function [economic, Regardless market conditions] 2 2 r ~ N(, ) r | I ~ N(, ) t t t1 9 P1.T4. Allen, Chapter 2: QuantifiyingVolatility in VaRModels Discuss the implications regime switching has on quantifying volatility. LLooww VVoollaattiilliittyy HHiigghh VVoollaattiilliittyy RReeggiimmee RReeggiimmee -4-3-2-10 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 RReeggiimmee--sswwiittcchhiinngg:: llooww oorr hhiigghh vvoollaattiilliittyy tthhaatt iiss ccoonnddiittiioonnaall ((ee..gg..,, oonn eeccoonnoommiicc ssttaattee)) Model likely to lag/delay actual volatility! (abrupt shift into new regime) 10
Description: