ebook img

Oxygen-enhanced combustion PDF

779 Pages·2013·63.317 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Oxygen-enhanced combustion

Baukal Mechanical Engineering O OXYGEN-ENHANCED X Y COMBUSTION G E N SECOND EDITION - E N Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion—new technologies H that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy A efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information N about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, and equipment design in one volume, making it a unique resource for specialists C implementing the use of oxygen in combustion systems. E This second edition of the bestselling book has more than doubled in size. Extensively updated and D expanded, it covers significant advances in the technology that have occurred since the publication of the first edition. C What’s New in This Edition O • Expanded from 11 chapters to 30, with most of the existing chapters revised M • A broader view of oxygen-enhanced combustion, with more than 50 contributors from over 20 organizations around the world B • More coverage of fundamentals, including fluid flow, heat transfer, noise, flame impingement, U CFD modeling, soot formation, burner design, and burner testing • New chapters on applications such as flameless combustion, steel reheating, iron production, S cement production, power generation, fluidized bed combustion, chemicals and petrochemicals, T and diesel engines I O This book offers a unified, up-to-date look at important commercialized uses of oxygen-enhanced combustion in a wide range of industries. It brings together the latest knowledge to assist those researching, N engineering, and implementing combustion in power plants, engines, and other applications. SECOND EDITION K12887 ISBN: 978-1-4398-6228-5 90000 9 781439 862285 K12887_COVER_final.indd 1 1/9/13 6:35 PM OXYGEN-ENHANCED COMBUSTION SECOND EDITION IndustrIal combustIon serIes Series Editors: Charles E. Baukal, Jr. The Coen & Hamworthy Combustion Handbook: Fundamentals for Power, Marine & Industrial Applications Stephen Londerville and Charles E. Baukal, Jr. The John Zink Hamworthy Combustion Handbook, Second Edition Volume 1—Fundamentals Volume II—Design and Operations Volume II1—Applications Charles E. Baukal, Jr. Industrial Burners Handbook Charles E. Baukal, Jr. The John Zink Combustion Handbook Charles E. Baukal, Jr. Computational Fluid Dynamics in Industrial Combustion Charles E. Baukal, Jr., Vladimir Gershtein, and Xianming Jimmy Li Heat Transfer in Industrial Combustion Charles E. Baukal, Jr. Oxygen-Enhanced Combustion Charles E. Baukal, Jr. OXYGEN-ENHANCED COMBUSTION SECOND EDITION Edited by Charles E. Baukal Jr. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20130111 International Standard Book Number-13: 978-1-4398-6230-8 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents List of Figures ..........................................................................................................................................................................vii List of Tables ........................................................................................................................................................................xxvii Preface to the First Edition ................................................................................................................................................xxxiii Preface to the Second Edition ............................................................................................................................................xxxv Acknowledgments ............................................................................................................................................................xxxvii Editor....................................................................................................................................................................................xxxix Contributors ..............................................................................................................................................................................xli 1. Introduction ........................................................................................................................................................................1 Charles E. Baukal, Jr. 2. Fundamentals ...................................................................................................................................................................25 Charles E. Baukal, Jr. 3. Oxygen Production..........................................................................................................................................................43 Roger M. McGuinness and William T. Kleinberg 4. Noncryogenic Oxygen Production ...............................................................................................................................77 Frank George Kerry 5. Potential Hybrid Methods for Oxygen Production ..................................................................................................89 Kyle P. Kostroski and Phillip C. Wankat 6. Safety Overview ............................................................................................................................................................109 Mark A. Niemkiewicz and J. Scott Becker 7. Cleaning for Oxygen Systems ....................................................................................................................................121 Frank George Kerry 8. Fuels ..................................................................................................................................................................................137 Y.-P. Zhang 9. Fluid Flow ........................................................................................................................................................................161 Wes Bussman and Charles E. Baukal, Jr. 10. Heat Transfer ..................................................................................................................................................................197 Charles E. Baukal, Jr. 11. Noise .................................................................................................................................................................................239 Wes Bussman, Jay Karan, Carl-Christian Hantschk, and Edwin Schorer 12. Flame Impingement ......................................................................................................................................................261 Charles E. Baukal, Jr. 13. Pollutant Emissions .......................................................................................................................................................299 Charles E. Baukal, Jr. 14. CFD Modeling of Oxygen-Enhanced Combustion ................................................................................................327 Ananth Sharma and Sreenivas Jayanti v vi Contents 15. Soot Formation in Oxygen-Enhanced Combustion ...............................................................................................385 Wilson Merchan-Merchan, Sergio Granados Sanmiguel, Alexei V. Saveliev, and Stephen McCollam 16. Laser Diagnostics for Oxygen-Enhanced Combustion .........................................................................................409 Sameer V. Naik and Robert P. Lucht 17. Equipment Design .........................................................................................................................................................423 Mark A. Niemkiewicz and J. Scott Becker 18. Burner Design ................................................................................................................................................................445 Hisashi (Sho) Kobayashi, Rémi Tsiava, and Charles E. Baukal, Jr. 19. Oxyfuel and Oxygen-Enhanced Burner Testing .....................................................................................................471 Lawrence E. Bool III, Nicolas Docquier, Chendhil Periasamy, and Lee J. Rosen 20. Flameless Oxyfuel Combustion and Its Applications ...........................................................................................495 Wlodzimierz Blasiak, Weihong Yang, Tomas Ekman, and Joachim von Schéele 21. Iron Production ..............................................................................................................................................................517 Michael F. Riley and Thomas Niehoff 22. Ferrous Metals ................................................................................................................................................................531 Nicolas Docquier, Michael Grant, and Kenneth Kaiser 23. Nonferrous Metals ........................................................................................................................................................557 Thomas Niehoff 24. Glass .................................................................................................................................................................................571 Prince B. Eleazer III and Bryan C. Hoke, Jr. 25. Oxygen Combustion in Cement Production ............................................................................................................585 Frank Zeman 26. Thermal Oxidation ........................................................................................................................................................607 Charles E. Baukal, Jr. 27. Coal-Fired Oxy-Fuel Technology for Carbon Capture and Storage ....................................................................631 Terry Wall, Rohan Stanger, and Dennis McDonald 28. Oxy-Fuel Fluidized Bed Combustion ........................................................................................................................649 L. Jia, Luis M. Romeo, Luis I. Díez, Isabel Guedea, Irene Bolea, and Carlos Lupiañez 29. Oxygen Enrichment in Sulfur Recovery ..................................................................................................................675 John A. (Jack) Olesen and Jana Janarthanan 30. Diesel Engines ................................................................................................................................................................681 Theodoros C. Zannis, Yiannis A. Levendis, Dimitrios T. Hountalas, Elias A. Yfantis, and Roussos G. Papagiannakis Appendix ................................................................................................................................................................................711 List of Figures Figure 1.1 S chematic of premixing O with air. ...............................................................................................................3 2 Figure 1.2 S chematic of O lancing. ...................................................................................................................................4 2 Figure 1.3 S chematic of oxy/fuel. .......................................................................................................................................5 Figure 1.4 S chematic of air-oxy/fuel burner. ....................................................................................................................5 Figure 1.5 O xidizer compositions for blends of air and pure O ...................................................................................6 2 Figure 1.6 O xy/fuel + flue gas recycle. ..............................................................................................................................6 Figure 1.7 Flue gas recirculation. .......................................................................................................................................6 Figure 1.8 F urnace gas recirculation..................................................................................................................................6 Figure 1.9 F uel requirement to produce 1 MMBtu = 1 × 106 Btu (HHV) vs. flue gas temperature as a function of the oxidizer composition and temperature ...............................................................................8 Figure 1.10 E xhaust gases net heat content increase factor for oxy/fuel compared to air/fuel ..................................9 Figure 1.11 N atural gas savings vs. flue gas temperature for oxidizers ranging from air to pure O . ....................16 2 Figure 1.12 F uel savings vs. flue gas temperature as a function for natural gas and No. 6 oil using OEC compared to air for combustion.....................................................................................................................17 Figure 1.13 F uel savings vs. flue gas temperature as a function of fuel type using oxygen instead of air for combustion. .......................................................................................................................................................17 Figure 1.14 B reakeven cost curve for the ratio of the cost of O to the cost of fuel (C) vs. the required 2 increase in fuel efficiency (f) for two different ratios of the oxygen to fuel flow rate (F). ....................19 Figure 2.1 C alculated excess O in the oxidizer (consisting of O + N) and in the dry combustion 2 2 2 products as a function of the O in the oxidizer for the combustion of methane with 15% excess 2 oxidizer. .............................................................................................................................................................27 Figure 2.2 E nhanced chemical reactivity of oxy/fuel compared to air/fuel combustion. .........................................28 Figure 2.3 A diabatic equilibrium reaction process. ......................................................................................................29 Figure 2.4 M ajor species concentrations vs. oxidizer composition, for an adiabatic equilibrium stoichiometric CH flame. ...............................................................................................................................29 4 Figure 2.5 M inor species concentrations vs. oxidizer composition, for an adiabatic equilibrium stoichiometric CH flame. ...............................................................................................................................29 4 Figure 2.6 E quilibrium predicted gas composition of the major species as a function of the gas temperature for air/CH and O/CH flames. .............................................................................................30 4 2 4 Figure 2.7 E quilibrium predicted gas composition of the minor species as a function of the gas temperature for air/CH and O/CH flames...............................................................................................30 4 2 4 Figure 2.8 A diabatic equilibrium predicted gas composition of the major species as a function of the stoichiometry for air/CH and O/CH flames. ...........................................................................................31 4 2 4 Figure 2.9 A diabatic equilibrium predicted gas composition of the minor species as a function of the stoichiometry for air/CH and O/CH flames. ...........................................................................................31 4 2 4 Figure 2.10 A diabatic flame temperature vs. oxidizer composition, for an adiabatic equilibrium stoichiometric CH flame. ...............................................................................................................................32 4 vii viii List of Figures Figure 2.11 C alculated burning temperature vs. O in the oxidizer (O + N) for isooctane and kerosene 2 2 2 drops at an initial temperature of 77°F. ........................................................................................................32 Figure 2.12 A diabatic flame temperature vs. stoichiometric for a CH flame and various oxidizers. .....................32 4 Figure 2.13 A diabatic flame temperature vs. oxidizer preheat temperature for stoichiometric air/CH and 4 O/CH flames. .................................................................................................................................................32 2 4 Figure 2.14 ( a) Contour plot of the adiabatic equilibrium flame temperature (°F) vs. oxidizer composition and O :CH stoichiometry for the combustion of ambient temperature methane. (b) Contour 2 4 plot of the adiabatic equilibrium flame temperature (K) vs. oxidizer composition and O :CH 2 4 stoichiometry for the combustion of ambient temperature methane. .....................................................33 Figure 2.15 Example of a Sankey diagram. ......................................................................................................................34 Figure 2.16 A vailable heat vs. oxidizer composition, for a stoichiometric CH flame, at exhaust 4 temperatures of 2000°F, 2500°F, and 3000°F. ................................................................................................34 Figure 2.17 A vailable heat vs. exhaust gas temperature, for stoichiometric air/CH and O/CH flames. .............35 4 2 4 Figure 2.18 A vailable heat vs. oxidizer preheat temperature, for stoichiometric, equilibrium air/CH and 4 O/CH flames at an exhaust gas temperature of 2500°F (1644 K). ...........................................................35 2 4 Figure 2.19 E xperimentally determined quench distance vs. O in the oxidant (consisting of O + N) for 2 2 2 the stoichiometric combustion of propane measured at two different mixture pressures. ................36 Figure 2.20 U pper and lower flammability limits vs. oxidizer composition, for a CH flame. ................................36 4 Figure 2.21 N ormal flame propagation velocity vs. oxidizer composition, for a stoichiometric CH flame. ........37 4 Figure 2.22 M aximum flame velocity vs. the mole fraction of O in the oxidant (consisting of O + N) 2 2 2 for various fuels, relative to the velocity for an oxidant with 0.21 mol fraction in the oxidant (approximately air) ..........................................................................................................................................37 Figure 2.23 D etonation velocities of methane-, ethane-, propane- butane-, and hexane-oxygen mixtures at atmospheric pressure. .....................................................................................................................................38 Figure 2.24 M inimum ignition energy vs. oxidizer composition for an atmospheric pressure, stoichiometric CH flame ................................................................................................................................38 4 Figure 2.25 I gnition temperature vs. oxidizer composition, for a stoichiometric CH flame. ...................................38 4 Figure 2.26 C alculated gas density for adiabatic equilibrium stoichiometric flames as a function of the oxidizer (O + N) and fuel compositions. ....................................................................................................39 2 2 Figure 2.27 N ormalized flue gas volume vs. oxidizer composition, for a stoichiometric CH flame. .....................40 4 Figure 2.28 C alculated gas specific heat for adiabatic equilibrium stoichiometric flames as a function of the oxidizer (O + N) and fuel compositions. .....................................................................................................40 2 2 Figure 2.29 C alculated gas thermal conductivity for adiabatic equilibrium stoichiometric flames as a function of the oxidizer (O + N) and fuel compositions. .........................................................................41 2 2 Figure 2.30 C alculated gas viscosity for adiabatic equilibrium stoichiometric flames as a function of the oxidizer (O + N) and fuel compositions. ....................................................................................................41 2 2 Figure 2.31 C alculated Prandtl number for adiabatic equilibrium stoichiometric flames as a function of the oxidizer (O + N) and fuel compositions. .....................................................................................................42 2 2 Figure 2.32 C alculated Lewis number for adiabatic equilibrium stoichiometric flames as a function of the oxidizer (O + N) and fuel compositions. .....................................................................................................42 2 2 Figure 3.1 T echnology selection chart. ............................................................................................................................44 Figure 3.2 ASU block diagram. .....................................................................................................................................45 Figure 3.3 S imple PFD of an ASU. ....................................................................................................................................45

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.