Table Of ContentOscillation Theory of
Differential Equations with
Deviating Arguments
PURE AND APPLIED MATHEMATICS
A Program of MOllOgraphs, Textbooks, alld Leclllre Notes
EXECUTIVE EDITORS
Earl J. Taft Zuhaif Nashed
Rutgers University University of Dd;n• .' Ore
New Brunswick. Ne!N Jersey Ne'WOrk. Deio ...., ore
CHAIRMEN OF THE EDITORIAL BOARD
S. Kobayashi Edwin liewitt
University of Colifornia, Berkeley U"II'ers;ty 01 Washington
Berkeley, California Seoule, Washington
EDITORIAL BOARD
M. S. Baouendi Donald Possman
Purdue University University Of Wisconsin-Madison
Jack K. Hale Fred S. Roberts
Brown University Rutgers University
Marvin Marcus Cion-Carlo Rota
University 0/ California. Sanla Barbara Mossochuseas Institute 01
TechnoloKY
IV. S. Massey
Yale University David Russell
Unil)erslty of Wisconsin-Madison
Leopolda Nachbin
Centro BTasi/eiro de Pesquisas Fisicos Jane Cronin Scanlo"
and University of Rochester Rutgers UniverSIty
Anil Nerode Walter Schempp
Cornell University Universita( Siegen
Mark Teply
University of Wisconsin·Milwaukee
MONOGRAPHS AND TEXTBOOKS IN
PURE AND APPLIED MATHEMATICS
I. K. Yana. Integral Formulas in Riemannian Geometry (1970)loUI o[ print)
2. S. Kobayashi, Hyperbolic Manifolds and lIolomorphic Mappings (1970)
lout of print)
3. V. S. V/adimirov, Equations of Mathematical Physics (A. Jeffrey. editor;
A. Littlewood, translator) (1970) lout of print)
4. B. N Pshenichllyi, Necessary Conditions for an Extremum (L. Neustadt,
translation editor; K. Makowski, translator) (1971)
5. L. Nar/ci, E. Beckens/ein. and C. Bachman, Functional Analysis and
Valuation Theory (1971)
6. S. S. Passman; Infinite Group Rings (1971)
7. L. Dornhoff. Group Representation Theory (in two parts). Part A;
Ordinary Representation Theory. Part B: Modular Representation Theory
(1971, 1972)
8. W. Boothby Q"d C. L. Weiss reds';: Symmetric Spaces: Short Courses
Presented at Washington University (1 ~72)
9. Y. Mauushima, Differentiable Manifolds (E. T. Kobayashi, translator)
( 1972)
10. L. E. Ward, Jr., Topology: An Outline for a First Course (1972) lout of
prin t)
11. A. Babak/lOniall, Cohomological Methods in Group Theory (1972)
12. R. Gilmer, Multiplicative Ideal Theory (1972)
13. J. Yell, Stochastic Processes and the Wiener Integral1l973) (out of print)
14. J. 8arras~Nefo, Introduction to the Theory of Distributions (1973)
(out of prim)
15. R. Larsen. Functional Analysis: An Introduction (I 973) (aliI of prillt)
16. K. Yalla and S. Ishihara, Tangent and Cotangent Bundles: Differential
Geometry (1973) 10llt of print)
17. C. Procesl. Rings with Polynomi<tl Identities (1973)
18. R. liermann, Geometry, Physics. and Systems (1973)
19. N. R. Wallach. Harmonic Analysis on Homogeneous Spaces (1973)
(OUf of print)
20. J. Dieudonlle, Introduction to the Theory of Formal Groups (1973)
21. I. Vaisman, Cohomology and Differential Forms (1973)
22. B. • t'. Chell, Geometry of Submanifolds (1973)
23. M. Marcus. Finite Dimensional Multilinear Algebra (in two parts) (1973,
1975)
24. R. Larsen, Banach Algebras: An Introduction (1973)
25. R. O. Kujala and 11. L. Viller (eds.), Value Distribution Theory: Part A;
Part B: Deficit and Bczout Estimates by Wilhelm Stoll (1973)
26. K. O. Sro/arsky. Algebraic Numbers and Diophantine Approximation (1974
27. 'I. R. Magid, The Separable Galois Theory of CommutatIve Rings (1974)
28. B. R. McDollald, Finite Rings with Identity (1974)
29. J. Salake, Linear Algebra (S. Koh, T. A. Akiba, and S. Iham, translators)
(1975)
30. J. S. Gola,r. Localization of Noncommutallve Rings (1975)
31. G. Klambauer. Mathematical Analysis (1975)
32. M. K. Agostoll. Algebraic Topology: A First Course (1976)
33. K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules (1976)
34. I.. . E. Mansfield, Linear Algebra with Geometric Apphcations; Selected
Topics (1976)
35. N. J. 1'lIl1man, Matrix Theory and Its Applications (1976)
36. B. R. MeDollald, Geometric Algebra Over Local Rings (1976)
c.
37. III. Groersch, Generalized Inverses of linear Operators: Representation
and Approximation (1977)
38. J. E. Kllczkowsk;andJ. L. Gerst;lIg, Abstract Algebrd: A Flfst Look (1977)
39. C. O. Cllr;stensoll and IV. L Voxman, Aspects of Topology (1977)
40. M. Nagata, Field Theory (1977)
41. R. L LOllg, Algebraic Number Theory (1977)
42. IV. F. Pfeffer, Integrals and Measures (1977)
43. R. L. Wheeden and A. Zygmulld. Measure and Integral: An Introduction to
Real Analysis (1977)
44. J. II. Cllrt;ss, Introduction to Functions of a Complex Variable (1978)
45. K. IIrbaeek alld T. Jecll, Introduction to Set Theory (1978)
46. IV. S. Massey, Homology and Cohomology Theory (1978)
47. M. Marcus, Introduction to Modern Algebra (1978)
48. E. C. YOllng, Vector and Tensor Analysis (1978)
49. S. B. Nadler, Jr., Hyperspaces of Sets (1978)
50. S. K. Segal, TopICS in Group Rings (1978)
c.
51. A. M. von Roo;;, Non-Archimedean Functional Analysis (1978)
52. L. ConvlII and R. Szczarba. Calculus in Vector Spaces (1979)
53. C. Sadosky. Interpolation of Operators and Singular Integrals: An
Introduction to Harmonic Analysis (1979)
54. J. Crom". Differential Equations: Introduction and Quantitative Theory
( 1980)
c.
55. IV. Groetscll, Elements of Applicable Functional Analysis (1980)
56. I. Vaismafl. Foundations of Three-Dimensional Euclidean Geometry (1980)
57. II. I. Freedman, Deterministic Mathematical Models in Population Ecology
( 1980)
58. S. B. Chae, Lebesgue Integration (1980)
59. C. S. Rees, S. M. Shah, and C. V. Sranojevic, Theory and Applications of
Fourier Analysis (1981)
60. L. Nacllbin. Introduction to Functional Analysis: Banach Spaces and
Differential Calculus (R. M. Aron, translator) (1981)
61. C. Orzech and M. Orzech, Plane Algebraic Curves: An Introduction
Via Valuations (1981)
62. R. Johnsonbaugh and W. E. Pfaffenberger, Foundations of Mathematical
Analysis (1981 )
63. W. L. Voxman and R. H. Goetschel. Advanced Calculus: An Introduction
to Modern AnalySiS (1981)
64. L. J. Corwin and R. H. Szcarba, Multivariable Calculus (1982)
v.
65. I. Istratescu, I ntroduction to Linear Operator Theory (1981)
66. R. D. Ju,vinen, Finite and Infinite Dimensional Linear Spaces: A
Comparative Study in Algebraic and Analytic Set tings (1981)
67. 1. K. BeemolldP. E. Ehrlich. Global LorenlzlanGcometry(1981)
68. D. L. Armacost, The Structure of Locally Compact Abelian Groups (I 981)
69. 1. IV. Brewer and M. K. Smith. eds., Emmy Noet her: A Tnbute to lIer Life
and Work (1981)
70. h. I/. Kim. Boolean Matnx Theory and Applicattons (1982)
71. T. W. Wieting. The Mathematical Theory of Chromatic Plane Ornuments
(1982)
72. D. B. Gould. Differential Topology: An Introduction (1982)
73. R. L. Faber. Foundations of Euclidean and Non-Euclidean Geometry (1983)
74. M. Corm eli. Statistical Theory and Random Matrices (1983)
75. J. /I. Carrulh. J. A. IWdebranl. and R. J. hoch. The Theory of
Topological Semigroups (1983)
76. R. L. Faber, Differential Geometry and RelatiVity Theory: An
Introduction (1983)
77. S. Bamett, Polynomials and Linear Control Systems (1983)
78. G. Karpi/ol'sky. Commutative Group Algebras (1983)
79. F. Vall Oystaeyell alld A. Verschoren, Relative Invariants of Rings: The
Commutative Theory (1983)
80. I. Voisman. A First Course in Differential Geometry (1984)
81. C. W. Swan, Applications of Optimal Control Theory in Biomedicine (1984)
82. T. Petrie and 1. D. Randall. Transformation Groups on Manifolds (1984)
83. K. Goebel and S. Reich. Uniform Convexity. l1yperbolic Geometry, and
Nonexpansive Mappings (1984)
84. 1'. Albu and C. NiistosesclI, Relative Finiteness in Module Theory (1984)
85. K. I/rbacek and T. Jech. Introduction to Sct Theory, Second EdItion,
Revised and Expanded (1984)
86. ,.~ Va" Oystaeyen and A. Versc/Joren. Relative Invariants of Rings: The
Noncommutative Theory (1984)
87. B. R. McDonald. Linear Algebra Over .commutative Rings (1984)
88. M. Namba. Geometry of Projective AlgebraiC Curves (1984)
89. G. F. Webb. Theory of Nonlinear Age-Dependent Populallon
Dynamics (1985)
90. M. R. Bremner. R. II, Moody, and 1. Patera, Tables of Dominant Weight
MUltiplicities for Representations of Simple Lie Algebras (1985)
91. A. E. Fekele. Real Linear Algebra (1985)
92. S. B. Chae, Holomorphy and Calculus in Normed Spaces (1985)
93. A. J. Jerri, Introduction to Integral Equations with Applications (1985)
94. G. Karpilovsky. Projective Representations of Finite Groups (1985)
95. L. Narici and t~ Beckenstem. Topological Vector Spaces (1985)
96. 1. Weeks, The Shape of Space: How to Visualize Surfaces and Three
Dimensional Manifolds (1985)
97. P. R. Gribik and K. O. Kortanek. Extremal Methods of Operations Research
( 1985)
98. 1.-A. C/zao and W. A. lIIoyczynski, eds. . Probability Theory and Harmonic
Analysis (1986)
99. G. D. Crown, M. fl. Fenrick. alld R. J. Valenza. Abstract Algebra (1986)
100. J. fl. Carrurh. J. A. /llldebram. and R. J. h och. The Theory of
Topological Semigroups. Volume 2 (1986)
101. R. S. Doran alld V. A. Be/fi, CharaCleril.ations of C"-Algebras: The
Gelfand-Nalmark Theorems (1986)
102. M. W. Jeter, Mathematical Programming: An Introduction to
Optimization (1986)
103. M. Altmall, A Unified Theory of Nonlinear Operator and Evolution Equa
tions with Applications: A New Approach to Nonhnear Partial Differential
Equations (1986)
104. A. Verschorefl. Relative Invariants of Sheaves (1987)
105. R. A. Usmani, Applied Linear Algebra (1987)
106. P. B/ass and J. Lang, Zariski Surfaces and Differential Equations in
>
Characteristic p 0 (1987)
107. J. A. Reneke, R. E. Fennel/, and R. B. Min toll. Structured lIereditary
Systems (1987)
108. II. Busemallll and B. B. Phadke, Spaces with Distinguished Geodesics
( I 987)
109. R. lIarte, InvertibiJity and Singularity for Bounded Linear
Operators (1987)
110. G. S. Ladde. V. I.akshmikanlham, and B. C. Zhang, Oscillation
Theory of Differcntial Equations with Dcvlating Arguments (1987)
III. L. Dudkifl, I. RablIIovich. and I. I 'ak/w III/sky , Iterative Aggregation
Theory (1987)
111. T. Okubo. Differential Geometry (1987)
Other Volumes itl Preparation
Oscillation Theory of
Differential Equations with
Deviating Arguments
G. S. LADDE
V. LAKSHMlKANTHAM
The University oJ Texas
Arlington. Texas
B.G. ZHANG
Shandong College of Oceanography
Qlngdaa. Shandong
People~ RepublIC of China
MARCEL DEKKER, INC. New York and Basel
Library of Congress Cataloging In Publication Data
Ladde, G. S.
Oscillation theory of differential equations with
deviating arguments.
(Pure and applied mathematics; 110)
Bibliography: p.
Inciudes Index.
1. Differential equations. 2. Oscillations.
I. Lakshmikantham, V. U. Zhang, B. G., (date).
ill. Title. IV. Series: Monographs and textbooks in pure
and applied mathematics; v. 110.
QA372. L19 1987 515.3'5 87-9232
ISBN 0-8247-7738-7"
265885
COPYRIGHT C 1987 by MARCEL DEKKER, rNC. ALL RIGHTS RESERVED
Neither this book nor any part may be reproduced or transmitted
in any form or by any means, electronic or mechanical, lncludIDg
photocopying. microfilming, and recording, or by any information
storage and retrieval system, without permission in wrlting from
the publisher.
MARCEL DEKKER, rNC.
270 Madison Avenue, New York, New York 10016
Current printing (last digit):
10 9 8 7 6 5 4 3 2 1
PRrNTED rN THE UNITED STATES OF AMERICA
Preface
The mathematical modellng of several real-world problems leads to
differential equations that depend on the past history rather than only the
current state. The models may have discrete time lags as well as distrib
uted lags or delays.
Most of the work in the theory of oscillations is centered around second
or hlgher order ordinary differential equations (ODE) because of the fact
that the first order scalar OOEs do not possess oscillatory behavior.
Bernoulli (1728) studied the problem of sound vlbratlng In a tube of flnlte
length and investigated the properties of first order ordinary differential
equations with deviating arguments (ODEWDA). Myskis investigated several
oscUlation problems of first order ODEWDA, which are recorded in his
book. Since 1950 oscillation theory of ODEWDA has received the attention
of several applied mathematicians as well as other scientists around the
world. In light of this. it is essential to present an up-to-date account in
a systematic way.
This book offers a systematic treatment of oscUlation and nonoscillattOD
theory of differential equations with deviatlng arguments. The book Is
divided into six chapters. The first chapter conSists of preUminary material
that is essential for the rest of the book. Chapters 2 and 3 deal with first
order linear and nonlinear differential equations with deviating arguments.
Chapter 4 is devoted to second order equations. Chapter 5 extends the study
to higher order equations. In Chapter 6, we introduce the oscillation theory
to systems of differential equaUons with deviating arguments.
Some important features of the book are the following:
(I) This Is the first English language book tbat offers a systematic study
of the theory of oscUlation of ordinary differential equations with devi
ating arguments. It complements the book by Swanson [260] which dis
cusses the oscillation theory of linear ordinary differential equations
only.
(it) This book stresses the importance of deviattng arguments in the sense
that their presence causes or destroys the oscillation phenomena,
III
Iv Preface
and does Dot merely preserve the oscUla tory behavtor of equations
without deviating arguments.
(ill) This book contains recent results and consoquently is a valuable source
for research workers In the field.
We wish to express our thanks to Ms. Vickie Kearn and the staff
of Marcel Dekker, Inc., for their cooperation during the publlcatlon of the
book. We also wish to thank Mrs. Sandra Weber for her excellent typtog of
the manuscript.
o. S. Ladde
V. Lakshmlkantham
B. O. Zhang
Description:Ladde G.S., Lakshmikantham V., Zhang B.G. Oscillation theory of differential equations with deviating arguments (M. Dekker, 1987)(ISBN 0824777387)(O)(320s)