ORDINARY DIFFERENTIAL EQUATIONS An Introduction to the Fundamentals Second Edition Textbooks in Mathematics Series editors: Al Boggess and Ken Rosen CRYPTOGRAPHY: THEORY AND PRACTICE, FOURTH EDITION Douglas R. Stinson and Maura B. Paterson GRAPH THEORY AND ITS APPLICATIONS, THIRD EDITION Jonathan L. Gross, Jay Yellen and Mark Anderson COMPLEX VARIABLES: A PHYSICAL APPROACH WITH APPLICATIONS, SECOND EDITION Steven G. Krantz GAME THEORY: A MODELING APPROACH Richard Alan Gillman and David Housman FORMAL METHODS IN COMPUTER SCIENCE Jiacun Wang and William Tepfenhart SPHERICAL GEOMETRY AND ITS APPLICATIONS Marshall A. Whittlesey AN INTRODUCTION TO MATHEMATICAL PROOFS Nicholas A. Loehr COMPUTATIONAL PARTIAL DIFFERENTIAL EQUATIONS USING MATLAB® Jichun Li and Yi-Tung Chen AN ELEMENTARY TRANSITION TO ABSTRACT MATHEMATICS Gove Effinger and Gary L. Mullen MATHEMATICAL MODELING WITH EXCEL, SECOND EDITION Brian Albright and William P. Fox PRINCIPLES OF FOURIER ANALYSIS, SECOND EDITION Kenneth B. Howell https://www.crcpress.com/Textbooks-in-Mathematics/book-series/CANDHTEXBOOMTH ORDINARY DIFFERENTIAL EQUATIONS An Introduction to the Fundamentals Second Edition Kenneth B. Howell University of Alabama in Huntsville, USA Second edition published 2020 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2020 Taylor & Francis Group, LLC [First edition published by CRC Press 2015] CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. ISBN: 978-1-138-60583-1 (hbk) ISBN: 978-0-429-34742-9 (ebk) Typeset in NimbusRomNo9L by Author Contents Preface (With ImportantInformation fortheReader) I TheBasics 1 1 TheStartingPoint: BasicConceptsandTerminology 3 1.1 DifferentialEquations: BasicDefinitionsandClassifications . . . . . . . . . . . . 3 1.2 WhyCareAboutDifferentialEquations? SomeIllustrativeExamples . . . . . . . 8 1.3 MoreonSolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 IntegrationandDifferentialEquations 21 2.1 Directly-IntegrableEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 OnUsingIndefiniteIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 OnUsingDefiniteIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 IntegralsofPiecewise-DefinedFunctions . . . . . . . . . . . . . . . . . . . . . . 28 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 II First-Order Equations 35 3 SomeBasicsaboutFirst-OrderEquations 37 3.1 AlgebraicallySolvingfortheDerivative . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Constant(orEquilibrium)Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 OntheExistenceandUniquenessofSolutions . . . . . . . . . . . . . . . . . . . . 42 3.4 ConfirmingtheExistenceofSolutions(CoreIdeas) . . . . . . . . . . . . . . . . . 44 3.5 DetailsintheProofofTheorem3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.6 OnProvingTheorem3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.7 Appendix: ALittleMultivariableCalculus . . . . . . . . . . . . . . . . . . . . . . 59 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4 SeparableFirst-OrderEquations 65 4.1 BasicNotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 ConstantSolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3 ExplicitVersusImplicitSolutions . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4 FullProcedureforSolvingSeparableEquations . . . . . . . . . . . . . . . . . . . 77 4.5 Existence,Uniqueness,andFalseSolutions . . . . . . . . . . . . . . . . . . . . . 78 4.6 OntheNatureofSolutionstoDifferentialEquations. . . . . . . . . . . . . . . . . 81 4.7 UsingandGraphingImplicitSolutions . . . . . . . . . . . . . . . . . . . . . . . . 83 4.8 OnUsingDefiniteIntegralswithSeparableEquations . . . . . . . . . . . . . . . . 88 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 v vi 5 LinearFirst-OrderEquations 93 5.1 BasicNotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 SolvingFirst-OrderLinearEquations . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3 OnUsingDefiniteIntegralswithLinearEquations . . . . . . . . . . . . . . . . . 100 5.4 Integrability,ExistenceandUniqueness . . . . . . . . . . . . . . . . . . . . . . . 102 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6 SimplifyingThroughSubstitution 105 6.1 BasicNotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 LinearSubstitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3 HomogeneousEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.4 BernoulliEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7 TheExactFormandGeneralIntegratingFactors 117 7.1 TheChainRule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.2 TheExactForm,Defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.3 SolvingEquationsinExactForm . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.4 TestingforExactness—PartI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.5 “ExactEquations”: ASummary . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.6 ConvertingEquationstoExactForm . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.7 TestingforExactness—PartII . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8 ReviewExercisesforPartofPartII 143 9 SlopeFields: GraphingSolutionsWithouttheSolutions 145 9.1 MotivationandBasicConcepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9.2 TheBasicProcedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.3 ObservingLong-TermBehaviorinSlopeFields . . . . . . . . . . . . . . . . . . . 152 9.4 ProblemPointsinSlopeFields,andIssuesofExistenceandUniqueness . . . . . . 158 9.5 TestsforStability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 10 NumericalMethodsI:TheEulerMethod 177 10.1 DerivingtheStepsoftheMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 10.2 ComputingviatheEulerMethod(Illustrated) . . . . . . . . . . . . . . . . . . . . 180 10.3 UsingtheResultsoftheMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 10.4 ReducingtheError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 10.5 ErrorAnalysisfortheEulerMethod . . . . . . . . . . . . . . . . . . . . . . . . . 187 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 11 TheArtandScienceofModelingwithFirst-OrderEquations 197 11.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 11.2 ARabbitRanch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 11.3 ExponentialGrowthandDecay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 11.4 TheRabbitRanch,Again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 11.5 NotesontheArtandScienceofModeling . . . . . . . . . . . . . . . . . . . . . . 207 11.6 MixingProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 11.7 SimpleThermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 vii 12 NumericalMethodsII:BeyondtheEulerMethod 221 12.1 ForwardandBackwardEulerMethods . . . . . . . . . . . . . . . . . . . . . . . . 221 12.2 TheImprovedEulerMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 12.3 AFewOtherMethodsWorthBriefDiscussion . . . . . . . . . . . . . . . . . . . . 230 12.4 TheClassicRunge-KuttaMethod . . . . . . . . . . . . . . . . . . . . . . . . . . 232 12.5 SomeAdditionalComments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 III Second-andHigher-Order Equations 243 13 Higher-OrderEquations: ExtendingFirst-OrderConcepts 245 13.1 TreatingSomeSecond-OrderEquationsasFirst-Order . . . . . . . . . . . . . . . 246 13.2 TheOtherClassofSecond-OrderEquations“EasilyReduced”toFirst-Order . . . 250 13.3 Initial-ValueProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 13.4 OntheExistenceandUniquenessofSolutions . . . . . . . . . . . . . . . . . . . . 256 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 14 Higher-OrderLinearEquationsandtheReductionofOrderMethod 263 14.1 LinearDifferentialEquationsofAllOrders . . . . . . . . . . . . . . . . . . . . . 263 14.2 IntroductiontotheReductionofOrderMethod . . . . . . . . . . . . . . . . . . . 266 14.3 ReductionofOrderforHomogeneousLinearSecond-OrderEquations . . . . . . . 267 14.4 ReductionofOrderforNonhomogeneousLinearSecond-OrderEquations . . . . . 272 14.5 ReductionofOrderinGeneral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 15 GeneralSolutionstoHomogeneousLinearDifferentialEquations 279 15.1 Second-OrderEquations(Mainly) . . . . . . . . . . . . . . . . . . . . . . . . . . 279 15.2 HomogeneousLinearEquationsofArbitraryOrder . . . . . . . . . . . . . . . . . 290 15.3 LinearIndependenceandWronskians . . . . . . . . . . . . . . . . . . . . . . . . 291 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 16 VerifyingtheBigTheoremsandanIntroductiontoDifferentialOperators 299 16.1 VerifyingtheBigTheoremonSecond-Order,HomogeneousEquations . . . . . . . 299 16.2 ProvingtheMoreGeneralTheoremsonGeneralSolutionsandWronskians . . . . 306 16.3 LinearDifferentialOperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 17 Second-OrderHomogeneousLinearEquationswithConstantCoefficients 317 17.1 DerivingtheBasicApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 17.2 TheBasicApproach,Summarized . . . . . . . . . . . . . . . . . . . . . . . . . . 320 17.3 Case1: TwoDistinctRealRoots . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 17.4 Case2: OnlyOneRoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 17.5 Case3: ComplexRoots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 17.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 18 Springs: PartI 337 18.1 ModelingtheAction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 18.2 TheMass/SpringEquationandItsSolutions . . . . . . . . . . . . . . . . . . . . . 341 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 viii 19 ArbitraryHomogeneousLinearEquationswithConstantCoefficients 353 19.1 SomeAlgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 19.2 SolvingtheDifferentialEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 19.3 MoreExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 19.4 OnVerifyingTheorem19.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 19.5 OnVerifyingTheorem19.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 20 EulerEquations 371 20.1 Second-OrderEulerEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 20.2 TheSpecialCases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 20.3 EulerEquationsofAnyOrder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 20.4 TheRelationBetweenEulerandConstantCoefficientEquations . . . . . . . . . . 381 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 21 NonhomogeneousEquationsinGeneral 385 21.1 GeneralSolutionstoNonhomogeneousEquations . . . . . . . . . . . . . . . . . . 385 21.2 SuperpositionforNonhomogeneousEquations . . . . . . . . . . . . . . . . . . . 389 21.3 ReductionofOrder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 22 MethodofUndeterminedCoefficients(aka: MethodofEducatedGuess) 395 22.1 BasicIdeas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 22.2 GoodFirstGuessesforVariousChoicesof g . . . . . . . . . . . . . . . . . . . . 398 22.3 WhentheFirstGuessFails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 22.4 MethodofGuessinGeneral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 22.5 CommonMistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 22.6 UsingthePrincipleofSuperposition . . . . . . . . . . . . . . . . . . . . . . . . . 408 22.7 OnVerifyingTheorem22.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 23 Springs: PartII(ForcedVibrations) 415 23.1 TheMass/SpringSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 23.2 ConstantForce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 23.3 ResonanceandSinusoidalForces. . . . . . . . . . . . . . . . . . . . . . . . . . . 418 23.4 MoreonUndampedMotionunderNonresonantSinusoidalForces . . . . . . . . . 424 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 24 VariationofParameters(ABetterReductionofOrderMethod) 431 24.1 Second-OrderVariationofParameters . . . . . . . . . . . . . . . . . . . . . . . . 431 24.2 VariationofParametersforEvenHigherOrderEquations . . . . . . . . . . . . . . 439 24.3 TheVariationofParametersFormula . . . . . . . . . . . . . . . . . . . . . . . . . 442 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 25 ReviewExercisesforPartIII 447 IV TheLaplaceTransform 449 26 TheLaplaceTransform(Intro) 451 26.1 BasicDefinitionandExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 26.2 LinearityandSomeMoreBasicTransforms . . . . . . . . . . . . . . . . . . . . . 457 26.3 TablesandaFewMoreTransforms. . . . . . . . . . . . . . . . . . . . . . . . . . 459 ix 26.4 TheFirstTranslationIdentity(andMoreTransforms) . . . . . . . . . . . . . . . . 464 26.5 WhatIs“LaplaceTransformable”? (andSomeStandardTerminology) . . . . . . . 466 26.6 FurtherNotesonPiecewiseContinuityandExponentialOrder . . . . . . . . . . . 471 26.7 ProvingTheorem26.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 27 DifferentiationandtheLaplaceTransform 481 27.1 TransformsofDerivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 27.2 DerivativesofTransforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 27.3 TransformsofIntegralsandIntegralsofTransforms . . . . . . . . . . . . . . . . . 488 27.4 Appendix: DifferentiatingtheTransform. . . . . . . . . . . . . . . . . . . . . . . 493 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 28 TheInverseLaplaceTransform 499 28.1 BasicNotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 28.2 LinearityandUsingPartialFractions . . . . . . . . . . . . . . . . . . . . . . . . . 501 28.3 InverseTransformsofShiftedFunctions . . . . . . . . . . . . . . . . . . . . . . . 507 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 29 Convolution 511 29.1 Convolution: TheBasics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511 29.2 ConvolutionandProductsofTransforms . . . . . . . . . . . . . . . . . . . . . . . 515 29.3 ConvolutionandDifferentialEquations(Duhamel’sPrinciple) . . . . . . . . . . . 519 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523 30 Piecewise-DefinedFunctionsandPeriodicFunctions 525 30.1 Piecewise-DefinedFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 30.2 The“TranslationAlongtheT-Axis”Identity . . . . . . . . . . . . . . . . . . . . 528 30.3 RectangleFunctionsandTransformsofMorePiecewise-DefinedFunctions . . . . 533 30.4 ConvolutionwithPiecewise-DefinedFunctions . . . . . . . . . . . . . . . . . . . 537 30.5 PeriodicFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540 30.6 AnExpandedTableofIdentities . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 30.7 Duhamel’sPrincipleandResonance . . . . . . . . . . . . . . . . . . . . . . . . . 546 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553 31 DeltaFunctions 557 31.1 VisualizingDeltaFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 31.2 DeltaFunctionsinModeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 31.3 TheMathematicsofDeltaFunctions . . . . . . . . . . . . . . . . . . . . . . . . . 562 31.4 DeltaFunctionsandDuhamel’sPrinciple . . . . . . . . . . . . . . . . . . . . . . 566 31.5 Some“Issues”withDeltaFunctions . . . . . . . . . . . . . . . . . . . . . . . . . 568 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572 V PowerSeries andModified PowerSeries Solutions 575 32 SeriesSolutions: Preliminaries 577 32.1 InfiniteSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577 32.2 PowerSeriesandAnalyticFunctions . . . . . . . . . . . . . . . . . . . . . . . . . 582 32.3 ElementaryComplexAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591 32.4 AdditionalBasicMaterialThatMayBeUseful . . . . . . . . . . . . . . . . . . . 594 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599