IndonesianJournalofElectricalEngineeringandComputerScience Vol. 25,No. 1,January2022,pp. 25∼34 ISSN:2502-4752,DOI:10.11591/ijeecs.v25.i1.pp25-34 ❒ 25 Optimizing the effect of charging electric vehicles on distribution transformer using demand side management SwapnaGanapaneni,SrinivasaVarmaPinni DepartmentofElectricalandElectronicsEngineering,KoneruLakshmaiahEducationFoundation,Guntur,India ArticleInfo ABSTRACT Articlehistory: Thispapermainlyaimstopresentthedemandsidemanagement(DSM)ofelectricve- hicles(EVs)byconsideringdistributiontransformercapacityataresidentialarea.The ReceivedMar14,2021 objective functions are formulated to obtain charging schedule for individual owner RevisedOct27,2021 byi)minimizingtheloadvarianceandii)priceindicatedchargingmechanism. Both AcceptedNov26,2021 theobjectivefunctionsprofittheownerinthefollowingways:i)fulfillingtheirneeds, ii) minimizing overall charging cost, iii) lessening the peak load, and iv) avoiding Keywords: the overloading of distribution transformer. The proposed objective functions were worked on a residential area with 8 houses each house with an EV connected to a Charging 20kVAdistributiontransformer. TheformulationsweretestedinLINGOplatform- Demandsidemanagement optimizationmodelingsoftwareforlinear,nonlinear,andintegerprogramming. The Distributiontransformer resultsobtainedwerecomparedwhichgivesgoodinsightofEVloadschedulingwith- Electricvehicle outactualpriceprediction. Overloading Scheduling ThisisanopenaccessarticleundertheCCBY-SAlicense. CorrespondingAuthor: SwapnaGanapaneni DepartmentofElectricalandElectronicsEngineering,KoneruLakshmaiahEducationFoundation GreenFields,Vaddeswaram,GunturDistrict,AndhraPradesh,522502,India Email: [email protected] 1. INTRODUCTION Electric vehicle (EV) is the one can satisfy the need of future transportation due to lack of enough fossilfuelswhichtopsthedemandforelectricalenergy. InsuchasituationifcharginganddischargingofEVs arenothandledproperlywilloverloadsthegrid. InthisregardchargingtheEVatresidentialplacesisakey issueresultinginseveraltechnicalproblemsatthelevelofdistributiontransformer,demandsidemanagement (DSM)ispossiblyagoodsolution. AnoverviewontheliteratureofDSMtechniquesispresentedhere. Rapidincreaseindaytodayelec- tricitydemand,DSMhelpstoavoidutilitiesbuildingextracapacityofthegenerationbymeansofdecreasing thepeakdemandthroughshiftingandadjustingcustomerselectricityconsumption.DSMmainlyinvolvesthree programslikeefficientenergymanagement(EM),demandresponse(DR),effectiveloadmanagement(ELM) bythecustomers[1]. Figure1representsthedetailedclassificationofDSM. Energymanagement(EM)mainlyaimstoreduceenergyconsumptionwhichautomaticallyminimizes theenergycost. Agoodscopeofenergymanagementcanbeeasilyachievedinvarioussectorslikeindustrial, commercial, agricultural and even in households if energy saving tips are followed. Proper maintenance of boilers,steamsystems,compressedairsystems,motoranddrivesystems,andlighteningaspects,willlowers the energy usage. Time to time audit of energy; awareness and training programs; and good metering and billingsystems,aretheimportantaspectsthroughwhichefficientenergymanagementisobtained[1]. Demand response (DR) is one important policy of DSM which concentrates mainly on the pricing Journalhomepage: http://ijeecs.iaescore.com 26 ❒ ISSN:2502-4752 systemtomanagethepeakload.DRdenotes“changesinelectricusagebyend-usecustomersfromtheirnormal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designedtoinducelowerelectricityuseattimesofhighwholesalemarketpricesorwhensystemreliabilityis jeopardized”[2]. Figure1. Classificationofdemandsidemanagementtechniques Two major classification are done in the DR programs based on the pricing system are time-based pricing system (TBPS) and incentive-based pricing system (IBPS) [3]. Direct load control (DLC), interrupt- ible/curtailable service (I/CS), emergency demand response program (EDRP), capacity management (CM), demandbidding(DB),ancillaryservicemarket(ASM)areclassifiedunderIBPSwhereastimeofuse(ToU), realtimepricing(RTP),criticalpeakpricing(CPP)arecategorizedunderTBPS. – Directloadcontrol(DLC):DLCisoneapproachofDRwherecustomer’sloadsareshutsdownbythe utilitiesremotely onshort noticefor reliabilityproblems. Thisis mainlyexecuted onsmall consumers likeresidentialandsmallcommercialcustomer[4]. – Interruptible/curtailableservice(I/CS):Itistheprogramwherecustomersoncurtailoftheirequipment getsadiscountorcreditedontheirbillwhenthesystemisundercontingencyandiftheydonotagreeto curtail,theyarepenalized. – Emergencydemandresponseprogram(EDRP):Whenaneventoccurs,emergencyDRisausualprogram to implement. In the case of reliability events EDRP offers incentives to customers for reducing their loadsandcannotbepenalizedfornotcurtailingtheirloadbecausethepricesarepre-specified[5]. – Capacity management (CM): It is a demand side resource, during contingencies it commits to reduce prespecifiedamountofloadandpenalizestheparticipantsiftheydonotcurtailtheloadoninstructions. Customersobligingtheinstructionsareguaranteedtoreceivepaymentsinexchange. – ToU: Prices are set in advance but differs depending on the times of the day and will not reflect any adjustmentstotheactualconditionsofthesystem. Consumerswillnothaveanyincentivesforreduced consumptioninelectricityduringpeakperiodsandhourlymeteringisnotrequired. – RTP:Itisalsotermedasdynamicpricingaspricesvarieswithrealtimeconditionsandreflectstheactual phenomenonofthesystembyprovidingbestinformationaboutthepoweravailableatalocation.Energy consumptionshouldbemeasuredonhourlybasisasitischargedappropriately,andcustomersareoffered withincentivesfortheirreducedconsumptionofenergyduringpeakperiods. – CPP: This is a dynamic pricing scheme where few peak hours are charged with high prices to reduce peakdemandandothertimeperiodsarechargedwithnormalprices,therebypermitsthecustomersto minimizetheiroverallenergybill. IndonesianJElecEng&CompSci,Vol. 25,No. 1,January2022: 25–34 IndonesianJElecEng&CompSci ISSN:2502-4752 ❒ 27 Effectiveloadmanagement(ELM)techniquesaretheonewhereutilitytriestoreducethepeakcon- sumptionbythesubsequentapproacheslikepeakclipping,valleyfilling,loadshifting,strategicconservation, strategicloadgrowth,flexibleloadshape[6]. – Peakclipping:ItisthewaywhereloadisreducedduringpeaktimebymeansofDLClikeshuttingdown theequipmentoftheconsumer. Thismethodwillnotgreatlyinfluencetheentireloadcurvebutreflects inreductionofloadduringpeakperiod. – Valleyfilling:Itencouragesenergyconsumptionduringoffpeakhoursbythecustomersoverofferingin- centiveslikeallowingthemtopaylowtariffforchangingtheirscheduletooffpeakhours,anddiscounts. – Load shifting: This method aims to shift the load during peak hours to period where load is lessened howeveroveralldemandremainsconstantinthisphenomenon. – Strategic conservation: It mainly drives to bring down seasonal energy consumption by encouraging consumers towards the use of efficient devices and appliances, decreasing wastage of energy. It also offersincentivestoconsumerswhoadoptstechnologicalchangesintheirusage. – Strategicloadgrowth:Itmainlytriestocontrolseasonalincreaseinenergyconsumption. Thedealership employsintelligentsystems,effectivedevicesandmoreviablesourcesofenergytoreachtheirgoals. – Flexibleloadshape: Itincludessetofactivitiesandintegratedplanningbetweenconcessionaryandthe customer rendering to the requirement of the moment. Consumer loads are modeled with the help of loadlimitingequipmentsuchthattherewillnotbemuchdeviationintheactualloadandwillnotdisturb securityissues. UpgradingthedistributiontransformerwithpenetrationofEVinthedistributionsystemisacostex- pensive and unplanned charging of these EVs may cause the grid overloading. Therefore, a strategy DR is applied to avoid overloading of transformers by considering the priority of each individual home and conve- niencepreferencesetting. However,impactofvaryingpricesignalsisnotconsideredinapplyingDR[7]. Real time optimal scheduling of a battery energy storage system is proposed to reduce peak load of abuildingasanDSMtechniquetoreducecostofelectricalenergyin[8]andintegrationofrenewableenergy sourcesarenotconsidered.MicrogridgridresourceswereintegratedtotheIndiandistributionsystemandhave beenscheduledtoreducedependencyonmaingridandontheotherhandpeakloadsweremanagedbymeans offlexibleloadshapingwhichisatoolofDSMminimizesthecustomer’sdissatisfactionevendiminishedthe operationcostofmicrogrid[9]. PEVs charging control is done based on a new distributed random-access approach which does not needcentralizedcontrolandcanbeexecutedinrealtime. Theworkdiffersfromtheexistingmethodologiesas itconsidersthehistoricaldata tocoordinatesmartagentsratherthanRTP[10]. Multiobjectiveformulations were done in [11] to minimize total energy generation and cost associated for implementing DSM such that energy planning was done in a decentralized manner, PEVs charging is shifted resulted in reduction of total emissionsandsavingsincost. SchedulingofPEVsatabuildinggaragetoreducethepeakloadandenergycostisachievedin[12] by formulating an optimization model which minimizes the square of the Euclidean distance. Similarly, in a decentralized system, non-cooperative game approach is followed for obtaining charging and discharging schedulesofthebatteriesandadistributedalgorithmwasdevelopedwherethetotalenergychargingcostofa PEVisminimized.However,apricingmechanismforvehicletobuildingmodelisnotproposed,impactofdis- chargingprocessofbatteryonitslifeisnotevaluated,renewableenergysourcesintegrationisnotconsidered. DynamicpricingmechanismisoneofthepossiblesolutionstoachieveDSMwasworkedoutin[13]evaluated theeffectsofherdingunusualparticipationofcustomers, lazinessofcustomers, anddifferentusagegroupof customers. MinimumsizeoftheenergystoragesystemisproposedinPluginelectricvehiclechargingstation supportedbyrenewableenergysources[14]. Quadratic programming (QP) and multi agent system (MAS) approaches were discussed and com- paredbyMetsetal.in[15]reducedthepeakloadandvariabilityintheloadofadistributiongrid.MASproved tobethebesthoweverQPresultsgivemoreoptimalsolutions. However,EVschargedatoffpeaktimecanbe helpedtodischargetheirenergyduringpeakperiodsbacktothegridandvehiclesarrivingrandomlytocharge at the workplace are not considered. A micro grid consisting of wind, photovoltaic generation, utilized the stationarypluginhybridelectricvehiclesbydevelopinganoptimalscheduleforchargingthemtosupportthe dynamicnatureofrenewableresourcesisproposedin[16]. AnovelalgorithmisproposedtochargelargeEV fleetbypredictingtheirloaddayaheadsatisfyinggridconstraints,theindividualrequirementsofthecustomer Optimizingtheeffectofchargingelectricvehiclesondistributiontransformerusing... (SwapnaGanapaneni) 28 ❒ ISSN:2502-4752 like arrival and departure times, by minimizing their overall charging cost, developing their individual plans in [17]. Particle swarm optimization is implemented to optimally schedule the EVs in a coordinated manner andminimizedtheactivepowerlossescomparedtouncoordinatedchargingofEVsforanIEEE-33busradial system[18]. Ametaheuristicalgorithmusedasoptimizationalgorithmin[19]tooptimizedemandsideofen- hancetimeofuse(ETOU)pricingforacommercialloaddemandandsignificantlyanalyzedthatthetechnique shiftedthemaximumdemandfrompeaktimetooffpeaktimewhichminimizedthecostofelectricity. Impacts ofEVtechnologyandhowtheyhelptheworld’sgrowingdemandforenergyisdemonstratedin[20]. IncreaseinnumberofEVsgrowsdemandforelectricityandtoavoidinterruptionsinthegrid,PVin- tegrationwithEVchargingstationispresentedthoroughlyin[21].Energycontrollerformicrogridisdesigned in[22]todevelopcharginganddischargingschedulesofEVsbyabsorbingoverproducedelectricitywiththe integrationofrenewableenergyandshavesthepeakloadofthemicrogrid. Thispaperintroducedanobjectivefunctiontominimizetheloadvarianceandpriceindicatedcharging mechanismforcontrolledschedulingofEVsduringvalleyhours. Finallyresultsobtainedinboththemethods were compared and highlighted the best solution. The paper is outlined as follows: i) Section 2 consists of problemformulation,modellingofEVload;ii)Section3consistsoftwoobjectivefunctionsformulations;and iii)Section4summarizestheresultsbycomparingboththeschedulingschemes. 2. PROBLEMFORMULATION Theresidentialareaunderconsiderationisservedbya20kVAdistributiontransformerfromthegrid. It is having 8 houses and each house with an EV as shown in Figure 2. Each household load is the power consumedforlighting,airconditioner,washingmachine,andwaterheater. andnotincludingtheEVload. The householdloadprofileisadoptedfrom[23]whichisinfactconsideredfromthewebsiteofelectricreliability council of Texas (ERCOT), a South-Central Texas residential area. Basic household load profile of a day is showninFigure3. 2.1. StochasticEVloadmodelling As EVs charging adds extra load to the distribution transformer there is a need to know about their daily travelling distances, estimating initial state of charge (SoC), starting time of charging to balance the energyandtoavoidupgradingtheexistingtransformer. ToaccountuncertaintiesinthebehaviorofEVload, probabilistic distribution functions are used to estimate arrival time of the vehicle, distance travelled, initial SoC and time required to charge its battery. As per national household travel survey (NHTS) 2009 report whichprovidescompletedetailsoftransportationinUS,dailydistancetravelledbyanEVfollowsLognormal distributionandarrivaltimeofthevehiclefollowsGaussiandistributionfunctions. Distancetravelledbymostofthepeopleisaround20-25milesadayandmorethanhalfofthepeople travellessthan30miles/day[23]. ThetravelleddistanceinmilesperdaycanbeapproximatedbyLognormal distributiongivenby(1)withmean(µ)of3.37andstandarddeviation(σ)of0.5anditisshowninFigure4. 1 F (d)= √ e−(lnd−µ)/2σ2 ford>0 (1) dist dσ 2π %ofsoc =[1−(E ∗d )/C ]∗100 (2) j C j bat Basedonthedistancetravelledinitialstateofcharge(SoC)ofallEVscanbeestimatedasfollowing from (2). Where soc is the initial soc of jth vehicle. d is the distance travelled in miles by jth vehicle. j j E is the energy consumed in kWh/miles. C is the battery capacity in kWh. The EV model considered c bat inthisstudyisNissanLeaf2016model, acarwhichsolelyrunsonelectricitywith24kWhbatterycapacity andhaving0.28kWh/milesconsumption. Energystillrequiredandtimeneededtochargethebatterycanbe obtainedasfrom(3)and(4). socf −soc Ereq = j ∗C (3) j η bat Where Ereq energy required to fill jth vehicle’s battery in kWh, η is the efficiency of the charger which is j consideredas0.95,SoC isthefinalSoCtobeattainedbytheendofthechargingand(4), f C =Ereq /P (4) time j IndonesianJElecEng&CompSci,Vol. 25,No. 1,January2022: 25–34 IndonesianJElecEng&CompSci ISSN:2502-4752 ❒ 29 whereC isthechargingtimerequiredtochargebatteryinHours,Pistheoutputpowerofthechargerin time kW.SinceitisassumedchargingEVsisdoneatresidentialareafrom[24],[25],level1chargingoutputpower is 1.44 kW (120 V,12 A) and for level 2 it is 3.3 kW (240 V,14 A) are considered. Most of the household ownerschargetheirEVsaftertheyreturnhomefromworkat16:00to21:00accordingtoNHTS2009report, therandomnessinconnectingEVstostartchargingfollowsGaussiandistributionasgivenin(6)withamean (η) of 17:00 and standard deviation (σ) of 2.28. The distribution function is described as follows and the distributioncurveforarrivaltimeoftheEVisshowninFigure5. 1 F (t)= √ e−(t−µ)/2σ2, for0<t<24 (5) A σ 2π Figure2. Residentialareaservedbydistributiontransformerunderstudy Figure3. Householdloadprofileofaday To come up with randomness in the arrival time and distance travelled by the EVs random function isappliedtotheirprobabilitydistributionfunctionsuchthatarrivaltimeanddistancetravelledbyeachEVare obtained. TheuncontrolledloadcurvewhichincludeEVsalongwithhouseholdload,householdloadandEV loadareshowninFigure6andFigure7respectivelyforlevel1andlevel2charging. Theuncontrolledload resultsfrom householdload andEVs loadwhen everyhousehold ownerconnects theirEV immediatelythey arrivehome. ItisobservedthatfromFigure5andFigure6duetouncontrolledchargingofEVsdistribution transformer is overloaded for 4 hours about 25% in level 1 whereas for almost 2 hours to 50% in level 2 charging. Optimizingtheeffectofchargingelectricvehiclesondistributiontransformerusing... (SwapnaGanapaneni) 30 ❒ ISSN:2502-4752 Figure4. Distributionofdistancetravelledin Figure5. Distributionofarrivaltime miles ofEVs Figure6. UncontrolledchargingofEVs Figure7. UncontrolledchargingofEVs overloadingdistributiontransformerinlevel1 overloadingdistributiontransformerinlevel2 charging charging 3. OPTIMIZATIONPROBLEMSFORCONTROLLEDCHARGINGOFEVS InthissectiontwoobjectivefunctionaredesignedbasedonDSMmethodologiestocontrolthecharg- ing of EVs such that optimal schedule of EVs are obtained which allows distribution transformer to operate withinitscapacitylimits. 3.1. Method1: Minimizingloadvariance The idea behind this objective function is to reduce load during peak hours, flatten the load curve whichminimizesthevarianceofenergyrequiredinaday. Minimizingthedifferenceofloadbetweenoffpeak hoursandpeakhourshelpsthedistributiontransformertofunctionathighefficiency. AppropriateScheduling ofEVsachievesthisobjectivemoreeasily. TheobjectiveformulationofDSMcanbeexpressedasfollowsand EV istheoptimizationvariable. ij 2 (cid:88)24 (cid:88)8 Minimize τ − (Hij +EVij) (6) i=1j=1 Whereτ isthetotalloadprofiletobemetinadayinkW.H isthejthhomeloadprofileatithtimeperiodin ij kW.EV isthechargingpowerofthejthvehicleatithtimeperiodinkW. ij 8 (cid:32) 24 (cid:33) (cid:88) (cid:88) andτ = H +Ereq ij j j=1 i=1 IndonesianJElecEng&CompSci,Vol. 25,No. 1,January2022: 25–34 IndonesianJElecEng&CompSci ISSN:2502-4752 ❒ 31 Subjectedtofollowingconstraints, td (cid:88) ∀j soc + EV ∗ η ≤Ereq j ij j i=ta ∀iand∀j 0≤EV ≤Emax ij j 8 (cid:88) ∀i (H +EV )≤ P ij ij trans j=1 whereSoc istheexistingsocofthejthvehiclebeforeitconnectsforcharginginkW.ηistheefficiencyofthe j chargerwhichisconsideredas0.95. Ereq chargingpowerneededtofilljth vehicle’sbatteryinkW.Emax j j isthepowerratingofthechargerinkW.P transformerloadinkW.ta,tdarearrivalanddeparturetimes trans respectively. 3.2. Method2: Priceindicatedchargingmechanism The charging price of the EVs mainly depends on the fluctuations in the load. Prior information aboutelectricitypricehelpsconsumerstoshifttheirloadfrompeakperiodtooffpeakperiod. Themainaim of this objective is to shift load from peak hours to off peak hours with the help of a price indicator. Thus, this objective function schedules the charging of EVs more optimally without knowledge of real time prices suchthatitminimizesthechargingcostoftheEVsandpreventsdistributiontransformergettingoverloaded. Therefore,theobjectivefunctionis(7), 24 24 8 (cid:88) (cid:88)(cid:88) MIN Ei+ Pij ∗Ci (7) i=1 i=1j=1 where C =δ /δ i i T andE isthetotalhouseholdloadprofileatith hourinkW.P isthechargingpowerofthejth vehicleatith i ij time period in kW. C is the price indicator which is the ratio of household load at i th period to the average i householdloadoftheday. δ isthehouseholdloadatithperiodinkW.δ istheaveragehouseholdloadofthe i T dayinkW. 4. SIMULATIONRESULTS This section presents the results of the proposed optimization problems in two different charging levels. The proposed objectives are evaluated in LINGO platform. The aim is to achieve charging plan of eachvehiclewhilesatisfyingthecapacityofthedistributiontransformercapacity,minimizingthetotalcostof chargingEVsandfillingthebatteriesto90%oftheSoC.Theoptimizationisperformedonaresidentialarea withhouseholdload,EVloadobtainedfromstochasticmodellingandthetotalloadondistributiontransformer based on uncontrolledcharging of EVs. Here total load representsthe sum of household loadand EVs load. Figure6andFigure7presentsthe20kVAdistributiontransformeroverloadingconditionforlevel1andlevel2 respectivelyforuncontrolledchargingofEVs. Figure8andFigure9forlevel1andlevel2respectivelyshows thesameafterimplementingtheoptimizationformethod1alleviatingtheproblemofdistributiontransformer overloadconditionwhilesatisfyingtheEVownerrequirementslikearrivaltime,departuretimeandensuring thatthebatteryreaches90%ofSoC. Theoptimizationprobleminmethod2i.e. Priceindicatedchargingmechanismisanalysedonlevel 2 charging as more power is required to charge EVs in less duration when compared to level 1 and resulted insignificantpeaksasshowninFigure7. TheoptimizationresultsshowthatEVsloadisscheduledsuchthat the total load curve is well below within the rated capacity of distribution transformer which minimises the overallcostoftheelectricity. Howeveroff-peakhoursfrom1:00to8:00areturnedouttobepeakhourswhich istreatedaspriceindicateduncontrolledchargingasshowninFigure10. From the household load profile of a day shown in Figure 3 off peak hours are from 1:00 to 10:00. OverallchargingcostofEVsarefurtherminimisedbyslightlyadjustingthedeparturetimeofvehiclesupto 10:00am. Figure11showsthepriceindicatedcontrolledchargingofEVs. Optimizingtheeffectofchargingelectricvehiclesondistributiontransformerusing... (SwapnaGanapaneni) 32 ❒ ISSN:2502-4752 Figure8. ControlledchargingofEVsinlevel-1 Figure9. ControlledchargingofEVsinlevel-2 alleviatingoverloadconditionofdistribution alleviatingoverloadconditionofdistribution transformerafterminimisingloadvariance transformerafterminimisingloadvariance Figure10. Priceindicateduncontrolledcharging Figure11. Priceindicatedcontrolledcharging mechanismforlevel2chargingofEVs mechanismforlevel2chargingofEVs 4.1. Comparisonofproposedoptimizationmethodsforlevel2charging Thehouseholdload,EVloadandtotalloadofthedistributiontransformerwhenEVsareconnectedin level2chargingmodebasedonuncontrolledcharging,minimisingloadvarianceandpriceindicatedcharging mechanisms are presented in the Figure 12 and Figure 13 respectively. After performing the proposed opti- mizationmethodsforDSM,withoutdisturbingnonEVloadi.ehouseholdloadbypropermanagementofEVs, distributiontransformeroverloadingproblemissolved. FromtheFigure12itcanbeobservedthataloneconsideringhouseholdloadiswellbelowthelimits ofthetransformerbutthetotalloadoftransformeralongwithhouseholdloadwhenEVsareconnectedinun- controlledmanneroverloadedthedistributiontransformerfrom100to150%ofitscapacityforalmost3hours during peak hours in the night. So, to minimize the load fluctuations and peak load the above implemented optimizations resulted in total load of controlled charging of EVs, total load of price indicated uncontrolled chargingofEVs, totalloadofpriceindicatedcontrolledchargingofEVs. Outofwhichpriceindicatedcon- trolled charging of EVs balanced the system very well in terms of the total load on the transformer and in minimizing the charging price of the EVs. In price indicated uncontrolled charging though the total load on distribution transformer is well up to the capacity of transformer, off peak hours are loaded to full extent of thetransformercapacitywhichmayresultinincreaseofchargingpricesofEVscomparedtopriceindicated controlledcharging.So,eventhoughthereisaslightviolationinthedeparturetimesofvehiclespriceindicated controlledchargingseemstobebestwhencomparedtocontrolledandpriceindicateduncontrolledcharging. IndonesianJElecEng&CompSci,Vol. 25,No. 1,January2022: 25–34 IndonesianJElecEng&CompSci ISSN:2502-4752 ❒ 33 However,withouthavingtheknowledgeofpricefluctuations,notdisturbingthehouseholdloadwhilesatisfy- ingEVowner’srequirementsEVsloadisscheduledinanoptimalmannerbyadoptingthetransformerlimits in minimizing the load variance optimization i.e method 1. Therefore, out of the three cases if price is not a constraint controlled charging of EVs, Price indicated uncontrolled charging yields the good solution to the residentialareaaswellastothedistributiongridfollowingalltheirrequirementsevenoptimizingthecostof charging EVs to most possible extent. Similarly, if there is minor flexibility considered in departure time of EVsaboveallpriceindicatedcontrolledcharginggivesthebestsolutionobeyingthelimitsonthetransformer aswellasminimizingoverallchargingcostofEVsfurtherproceededtosatisfytheEVownerrequirements. Figure12. Householdload,comparisonofEV Figure13. Householdload,comparisonoftotal loadofuncontrolled,controlled,price loadofuncontrolled,controlled,price indicateduncontrolled,priceindicated indicateduncontrolled,priceindicated controlledforlevel2chargingofEVs controlledforlevel2chargingofEVs 5. CONCLUSION ThispaperfirstlypresentedthemethodologytomodelthestochasticEVloadandtotalloadatares- idential area including EV load is calculated. As uncontrolled charging of EVs resulted in overloading of distribution transformer, demand side management techniques are implemented. The proposed optimization methodsalleviatedtheproblemofoverloadingtransformer. Totalloadonthedistributiontransformeriscom- paredinalltheapproaches. ItisobservedthatmethodoneminimizedtheloadfluctuationsbyshiftingEVload from peak hours to off peak hours and method two is implemented where EVs load is scheduled during low pricehoursandnoknowledgeonfluctuationsinrealtimepriceisneeded.Bothmethodssatisfiedtheconstraint onthetransformercapacity,avoidedpeakloadonthesystem,minimizedthechargingcostofEVsandsched- uled them within the given time limit. We also presented the price indicated controlled charging mechanism whichfurtheroptimizedthechargingpriceofEVswithslightdeviationindeparturetimes. REFERENCES [1] C.W.Gellings,“Evolvingpracticeofdemand-sidemanagement,”Journalofmodernpowersystemsandcleanenergy,vol.5,no.1, pp.1–9,2017,doi:10.1007/s40565-016-0252-1. [2] M.C.Falvo,G.Graditi,andP.Siano,“Electricvehiclesintegrationindemandresponseprograms,”in2014InternationalSymposium onPowerElectronics,ElectricalDrives,AutomationandMotion,2014,pp.548-553,doi:10.1109/SPEEDAM.2014.6872126. [3] P.Khajavi,H.Abniki,andA.Arani,“Theroleofincentivebaseddemandresponseprogramsinsmartgrid,”in201110thInterna- tionalConferenceonEnvironmentandElectricalEngineering,2011,pp.1-4,doi:10.1109/EEEIC.2011.5874702. [4] J.AghaeiandM.-I.Alizadeh,“Demandresponseinsmartelectricitygridsequippedwithrenewableenergysources: Areview,” RenewableandSustainableEnergyReviews,vol.18,pp.64–72,2013,doi:10.1016/j.rser.2012.09.019. [5] R.Aazami,S.Daniar,andV.Talaeizadeh,“Emergencydemandresponseprogrammodelingonpowersystemreliabilityevaluation,” JournalofElectricalEngineering,vol.23,no.4,pp.151–157,2016,doi:10.6329/CIEE.2016.4.03. [6] G.Gaur,N.Mehta,R.Khanna,andS.Kaur,“Demandsidemanagementinasmartgridenvironment,”in2017IEEEInternational ConferenceonSmartGridandSmartCities(ICSGSC),2017,pp.227-231,doi:10.1109/ICSGSC.2017.8038581. [7] S.Shao,M.Pipattanasomporn,andS.Rahman,“Demandresponseasaloadshapingtoolinanintelligentgridwithelectricvehicles,” IEEETransactionsonSmartGrid,vol.2,no.4,pp.624–631,2011,doi:10.1109/TSG.2011.2164583. Optimizingtheeffectofchargingelectricvehiclesondistributiontransformerusing... (SwapnaGanapaneni) 34 ❒ ISSN:2502-4752 [8] M.AmoasiAcquah,D.Kodaira,andS.Han,“Real-timedemandsidemanagementalgorithmusingstochasticoptimization,”Ener- gies,vol.11,no.5,p.1166,2018,doi:10.3390/en11051166. [9] S.Paul,A.Tamrakar,andN.P.Padhy,“Demandsidemanagementbasedoptimalschedulingportfolioofamicrogridinlinearpro- grammingplatform,”in201820thNationalPowerSystemsConference(NPSC),2018,pp.1-6,doi:10.1109/NPSC.2018.8771711. [10] K.ZhouandL.Cai,“AdecentralizedaccesscontrolalgorithmforPHEVcharginginsmartgrid,”EnergySystems,vol.5,no.4,pp. 607-626,2014,doi:10.1007/s12667-013-0092-2. [11] B.RamachandranandA.Ramanathan,“Decentralizeddemandsidemanagementandcontrolofpevsconnectedtoasmartgrid,”in 2015ClemsonUniversityPowerSystemsConference(PSC),2015,pp.1-7,doi:10.1109/PSC.2015.7101679. [12] H.K.NguyenandJ.B.Song,“Optimalcharginganddischargingformultiplephevswithdemandsidemanagementinvehicle-to- building,”JournalofCommunicationsandnetworks,vol.14,no.6,pp.662-671,Dec.2012,doi:10.1109/JCN.2012.00032. [13] T.K.Wijaya,T.G.Papaioannou,X.Liu,andK.Aberer,“Effectiveconsumptionschedulingfordemand-sidemanagementinthe smartgridusingnon-uniformparticipationrate,”in2013SustainableInternetandICTforSustainability(SustainIT),2013,pp.1-8, doi:10.1109/SustainIT.2013.6685188. [14] M.Shaaban,A.Eajal,andE.El-Saadany,“Coordinatedchargingofplug-inhybridelectricvehiclesinsmarthybridAC/DCdistri- butionsystems,”RenewableEnergy,vol.82,pp.92-99,2015,doi:10.1016/j.renene.2014.08.012. [15] K.Mets,R.D’hulst,andC.Develder,“Comparisonofintelligentchargingalgorithmsforelectricvehiclestoreducepeakloadand demandvariabilityinadistributiongrid,”JournalofCommunicationsandNetworks,vol.14,no.6,pp.672-681,Dec.2012,doi: 10.1109/JCN.2012.00033. [16] K.VijayKumarandT.BharathKumar,“Optimalschedulingofmicrogridforplug-inelectricalvehicle,”InternationalJournalof EngineeringandTechnology(UAE),vol.7,no.2.7,pp.558-564,2018,doi:10.14419/ijet.v7i2.7.10882. [17] O.Sundstro¨mandC.Binding,“Planningelectric-drivevehiclechargingunderconstrainedgridconditions,”in2010International ConferenceonPowerSystemTechnology,2010,pp.1-6,doi:10.1109/POWERCON.2010.5666620. [18] W.I.F.W.Zalnidzam,H.Mohamad,N.A.Salim,H.Mokhlis,andZ.M.Yasin,“Optimalchargingschedulecoordinationofelectric vehiclesinsmartgrid,”IndonesianJournalofElectricalEngineeringandComputerScience(IJEECS),vol.11,no.1,pp.82-89, 2018,doi:10.11591/ijeecs.v11.i1.pp82-89. [19] M.Sulaima,N.Dahlan,Z.Yasin,N.Asari,andZ.Bohari,“Optimumenhancetimeofuse(ETOU)fordemandsideelectricity pricinginregulatedmarket: Animplementationusingevolutionaryalgorithm,”IndonesianJournalofElectricalEngineeringand ComputerScience(IJEECS),vol.8,no.1,pp.253-261,2017,doi:10.11591/ijeecs.v8.i1.pp253-261. [20] W.A.Salahetal.,“Electricvehicletechnologyimpactsonenergy,”InternationalJournalofPowerElectronicsandDriveSystems (IJPEDS),vol.10,no.1,pp.1-9,2019,doi:10.11591/ijpeds.v10.i1.pp1-9. [21] A. R. Bhatti, Z. Salam, M. J. B. Abdul, and K. P. Yee, “A comprehensive overview of electric vehicle charging using renew- able energy,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 7, no. 1, pp. 114-123, 2016, doi: 10.11591/ijpeds.v7.i1.pp114-123. [22] J.LeeandG.-L.Park,“Integratedcoordinationofelectricvehicleoperationsandrenewableenergygenerationinamicrogrid,”Inter- nationalJournalofElectricalandComputerEngineering(IJECE),vol.7,no.2,pp.706-712,2017,doi:10.11591/ijece.v7i2.pp706- 712. [23] C.M.AffonsoandM.Kezunovic,“Probabilisticassessmentofelectricvehiclechargingdemandimpactonresidentialdistribution transformeraging,”in2018IEEEInternationalConferenceonProbabilisticMethodsAppliedtoPowerSystems(PMAPS),2018, pp.1-6,doi:10.1109/PMAPS.2018.8440211. [24] C.Pang,P.Dutta,S.Kim,M.Kezunovic,andI.Damnjanovic,“Phevsasdynamicallyconfigurabledispersedenergystorageforv2b usesinthesmartgrid,”2010,doi:10.1049/cp.2010.0903. [25] S. S. Raghavan and A. Khaligh, “Impact of plug-in hybrid electric vehicle charging on a distribution network in a smart grid environment,”in2012IEEEPESInnovativeSmartGridTechnologies(ISGT),2012,pp.1-7,doi:10.1109/ISGT.2012.6175632. BIOGRAPHIESOFAUTHORS Mrs.GanapaneniSwapna workingasAssistantprofessorinthedepartmentofElectrical andElectronicsEngineeringatKLDeemedtobeuniversity(KLEF)intheareaofPowersystems control and Automation. She obtained her B.Tech and M.Tech degree from JNTU Kakinada and currently pursuing PhD in KLEF. She is having nine years of teaching experience. Her research interestsincludepowersystemsderegulationandoptimalchargingofElectricvehiclesinsmartgrid. Shepublished7articlesinSCIandScopusindexedjournals. SheisaffiliatedwithIEEEasstudent memberandACMasprofessionalmember.Shecanbecontactedatemail:[email protected]. Dr. Pinni Srinivasa Varma completed his M. Tech. from JNTU Hyderabad. He has completedhisPh.D.fromJNTUAnantapur. HisareasofresearcharePowerSystemDeregulation andPowerSystemReliability.Hehaspublished50researchpapersinvariousinternationaljournals. HehaswrittenatextbookonPowerSystemDeregulationandispublishedbyLambertpublishers. Hehaspublished2patentsintheareaofPowerSystems.Now,heisworkingasAssociateProfessor inEEEDept.,KLUniversity,Guntur,AndhraPradesh,India. AtpresentDr. PSVarmaisserving asAssociateDeanRD,KLEF.Hecanbecontactedatemail:[email protected]. IndonesianJElecEng&CompSci,Vol. 25,No. 1,January2022: 25–34