ebook img

Optimizing Hospital-wide Patient Scheduling: Early Classification of Diagnosis-related Groups Through Machine Learning PDF

132 Pages·2014·2.296 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optimizing Hospital-wide Patient Scheduling: Early Classification of Diagnosis-related Groups Through Machine Learning

Lecture Notes in Economics and Mathematical Systems 674 Daniel Gartner Optimizing Hospital- wide Patient Scheduling Early Classification of Diagnosis- related Groups Through Machine Learning Lecture Notes in Economics and Mathematical Systems 674 FoundingEditors: M.Beckmann H.P.Künzi ManagingEditors: Prof.Dr.G.Fandel FachbereichWirtschaftswissenschaften FernuniversitätHagen Hagen,Germany Prof.Dr.W.Trockel MuratSertelInstituteforAdvancedEconomicResearch IstanbulBilgiUniversity Istanbul,Turkey and InstitutfürMathematischeWirtschaftsforschung(IMW) UniversitätBielefeld Bielefeld,Germany EditorialBoard: H.Dawid,D.Dimitrov,A.Gerber,C-J.Haake,C.Hofmann,T.Pfeiffer, R.Slowin´ski,W.H.M.Zijm Forfurthervolumes: http://www.springer.com/series/300 Daniel Gartner Optimizing Hospital-wide Patient Scheduling Early Classification of Diagnosis-related Groups Through Machine Learning 123 DanielGartner TUMSchoolofManagement TechnischeUniversitätMünchen München Germany DissertationattheTechnischeUniversitätMünchen,TUMSchoolofManagement,submitted onJune12th,2013andacceptedonJuly15th,2013 ISSN0075-8442 ISBN978-3-319-04065-3 ISBN978-3-319-04066-0(eBook) DOI10.1007/978-3-319-04066-0 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014931786 (cid:2)c SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Acknowledgements First and foremost, I would like to thank Prof. Dr. Rainer Kolisch, who offered me a researchposition at the TUM SchoolofManagement,providedme a highly interesting research topic and supported me in every aspect of my research. Furthermore, my gratitude goes to Prof. Rema Padman, PhD, and Prof. Daniel Bertrand Neill, PhD, who offered me the opportunity to collaborate on research at the Heinz College, Carnegie Mellon University, USA. I would like to thank in particular Prof. Rema Padman, PhD, for joining the dissertation committee and Prof.Dr.GuntherFriedlforchairingit. I amverygratefultoDr. DirkLastandMartinKornhaasofthecountyhospital Erding for contributing their clinical experienceto my research and for providing thedataforthecasestudies. I would like to offermy thanksto former and currentcolleaguesat the depart- ment: Claus Henning Brech, Prof. Dr. Jens Otto Brunner, Dr. André Dahlmann, Jia Yan Du, Thomas Fliedner, Markus Matthäus Frey, Dr. Andreas Fügener, Dr.ChristianHeimerl,FerdinandKiermaier,Dr.PhilippMelchiors,AnularkNaber, PhD,SebastianSchiffelsandDr.Hans-JörgSchützformanyvaluablediscussions. Moreover,IamgratefultoStephenStarck,PhD,fromtheTUMlanguagecenterfor hisvaluablefeedbackonacademicwriting. Finally,IwanttothankInesVerenaArnoldsandmyfamilyfortheirinvaluable support. Munich,Germany DanielGartner June2013 v Contents 1 Introduction .................................................................. 1 1.1 DRG-SystemsandtheEconomicSituationinHospitals.............. 1 1.2 NecessityofaHolisticPlanningApproach............................ 4 1.3 Strategic,TacticalandOperationalProblemsinHospitals............ 5 1.4 TopicofThisDissertation .............................................. 6 1.5 Outline................................................................... 8 2 MachineLearningforEarlyDRGClassification......................... 9 2.1 MachineLearningforHealthCare:ALiteratureReview............. 9 2.1.1 SelectionCriteriaandSearchforRelevantLiterature....... 10 2.1.2 ClassificationofRelevantLiterature ......................... 11 2.2 AttributeRankingandSelectionTechniquesEmployed forEarlyDRGClassification........................................... 15 2.2.1 InformationGainAttributeRanking ......................... 15 2.2.2 Relief-FAttributeRanking ................................... 17 2.2.3 MarkovBlanketAttributeSelection.......................... 20 2.2.4 Correlation-BasedFeatureSelection......................... 24 2.2.5 WrapperAttributeSelection.................................. 24 2.3 Classification Techniques Employed for Early DRGClassification ..................................................... 25 2.3.1 NaiveBayes ................................................... 26 2.3.2 BayesianNetworks............................................ 26 2.3.3 ClassificationTrees............................................ 27 2.3.4 Voting-BasedCombinedClassification ...................... 30 2.3.5 ProbabilityAveragingtoCombinetheDRG GrouperwithMachineLearningApproaches................ 31 2.3.6 DecisionRule-BasedMappingofAttribute ValuestoDRGs................................................ 31 3 SchedulingtheHospital-WideFlowofElectivePatients ................ 33 3.1 Mathematical Programming Applied to Patient SchedulinginHospitals................................................. 33 vii viii Contents 3.1.1 SelectionCriteriaandSearchforRelevantLiterature....... 34 3.1.2 ClassificationofRelevantLiterature ......................... 34 3.2 ThePatientFlowProblemwithFixedAdmissionDates.............. 41 3.3 ThePatientFlowProblemwithVariableAdmissionDates........... 46 3.4 AnExampleofthePatientFlowProblemwithFixed andVariableAdmissionDates.......................................... 48 3.5 A Rolling Horizon Approach for Scheduling theHospital-WideFlowofElectivePatients .......................... 51 4 ExperimentalAnalyses...................................................... 55 4.1 ExperimentalEvaluationoftheEarlyDRGClassification ........... 55 4.1.1 DatafromPatientsThatContacttheHospital BeforeAdmission(ElectivePatients) ........................ 55 4.1.2 DatafromAllPatientsAvailableatAdmission (ElectiveandNon-electivePatients).......................... 57 4.1.3 ResultsoftheAttributeRankingandSelection.............. 60 4.1.4 EvaluationTechniquesfortheClassificationPart ........... 63 4.1.5 ComputationTimes ........................................... 64 4.1.6 ParameterOptimizationfortheClassificationTree ......... 68 4.1.7 ResultsoftheClassificationTechniques..................... 70 4.1.8 InvestigationonMajorDiagnosticCategories............... 76 4.1.9 InvestigationonSelectedDRGs.............................. 79 4.1.10 EvaluationofExpectedRevenueEstimates.................. 82 4.2 ComputationalandEconomicAnalysisofScheduling theHospital-WideFlowofElectivePatients .......................... 84 4.2.1 DataandInstanceGeneration................................. 84 4.2.2 ComputationTime Analysis of the Static Approaches.................................................... 87 4.2.3 EconomicAnalysisoftheStaticApproaches................ 87 4.2.4 EconomicAnalysisoftheRollingHorizonApproach ...... 88 5 Conclusion.................................................................... 93 5.1 Summary ................................................................ 93 5.2 MainResearchContributions........................................... 95 5.3 FutureResearch......................................................... 95 A NotationandListofAbbreviations........................................ 97 B AttributesAssessedandRankingResultsfortheEarly DRGClassification........................................................... 101 Bibliography...................................................................... 109 List of Figures Fig.1.1 HierarchicalDRG-groupingprocess(See Schreyöggetal.[195])................................................ 3 Fig.1.2 Ascheduleforasurgical(a)andtherapeutical clinicalpathway(b) ................................................... 5 Fig.2.1 Three-levelstructureofthe searchqueryincluding relevanttasks (a), machine learning methods(b) andfieldofresearch(c) ............................................... 10 Fig.2.2 MarkovblanketofvertexD........................................... 20 Fig.2.3 Causal networkofthe example(see Scutari[199]) includingtheMarkovblanketofattributeA(dashed grayrectangle)......................................................... 23 Fig.2.4 DifferentstepsduringtheMarkovblanketsearch ................... 23 Fig.2.5 Sampleclassificationtree ............................................. 28 Fig.2.6 Selected part of the classification tree beforethe additionoffurthernodes.............................................. 29 Fig.2.7 Finalclassificationtree................................................ 30 Fig.3.1 Twoexamplerevenue,costandcontribution(contrib.) margin functions.(a) Revenue includingper day surchargeforreachingthefirstandtheseconddayafter thehighLOStrimpoint.(b)Constantrevenueafter reachingthelowLOStrimpoint...................................... 43 Fig.3.2 ClinicalpathwaysforthePFP-FA(a)andthePFP-VA(b).......... 49 Fig.3.3 OptimalsolutionforthePFP-FA(a)andthePFP-VA(b)........... 50 Fig.3.4 Rollinghorizonprocedure ............................................ 52 Fig.3.5 Timewindowadaptionsub-routine................................... 53 Fig.4.1 DRGfrequencydistributionforelectivepatients .................... 56 Fig.4.2 DRGfrequencydistributionforallpatients.......................... 58 Fig.4.3 Assignmentofadmissionvs.dischargediagnosestoallpatients... 59 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.