ebook img

Optimizing Existing Multistory Building Designs towards Net-Zero Energy PDF

15 Pages·2017·9.81 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optimizing Existing Multistory Building Designs towards Net-Zero Energy

sustainability Article Optimizing Existing Multistory Building Designs towards Net-Zero Energy MohammadY.AbuGrainandHalilZ.Alibaba* DepartmentofArchitecture,FacultyofArchitecture,EasternMediterraneanUniversity,NorthCyprus, Famagusta,Mersin10,Turkey;[email protected] * Correspondence:[email protected];Tel.:+90-533-863-0881;Fax:+90-392-630-2365 AcademicEditors:AndyvandenDobbelsteenandGregKeeffe Received:14December2016;Accepted:1March2017;Published:8March2017 Abstract: Recentglobaldevelopmentsinawarenessandconcernsaboutenvironmentalproblems haveledtoreconsideringbuiltenvironmentapproachesandconstructiontechniques. Oneofthe alternativesistheprincipleoflow/zero-energybuildings. Thisstudyinvestigatesthepotentialsof energysavingsinanexistingmulti-storybuildingintheMediterraneanregioninordertoachieve net-zeroenergyasasolutiontoincreasingfossilfuelprices. TheColoredbuildingattheFacultyof Architecture,EasternMediterraneanUniversity,Cypruswaschosenasatargetofthisstudytobe investigatedandanalyzedinordertoknowhowenergyefficiencystrategiescouldbeappliedtothe buildingtoreduceannualenergyconsumption. Sincethisresearchobjectiveistodevelopastrategy toachievenet-zeroenergyinexistingbuildings,casestudyandproblemsolvingmethodologieswere appliedinthisresearchinordertoevaluatethebuildingdesigninaqualitativemannerthrough observations,inadditiontoaquantitativemethodthroughanenergymodelingsimulationtoachieve desirableresultswhichaddresstheproblems. Afteroptimizingthebuildingenergyperformance, analternativeenergysimulationwasmadeofthebuildinginordertomakeanenergycomparison analysis,whichleadstoreliableconclusions. Thesemethodologiesandthestrategiesusedinthis researchcanbeappliedtosimilarbuildingsinordertoachievenet-zeroenergygoals. Keywords: net-zero energy buildings; existing buildings; energy efficiency strategies; energy modelingsimulation 1. Introduction Cyprus, one of the largest islands in the Mediterranean has no petroleum reserves and is completelydependentonimportedenergyfrompetroleumproducts. TheenergystatisticsofNorth Cyprusoverthepast20yearsshowhighincreasesinannualelectricityconsumption,andallsectors energyisbeingprovidedfromCyprusTurkishElectricityAuthority(KIB-TEK)whichisbeingput underoppressivepressurebycustomerswhocallformaximizethesupplingcapacity,whichiscostly duetothehighpriceoffossilfuel[1]. Thisuncertainloadincreaseandtherisingcostoffossilfuels, requiresseriousattentionandconsiderationspeciallytobuildingsoptimizationstowardssustainability andenergyefficiency[2]. Worldwide,existingbuildingsconsumesaround40%ofenduseenergy however1%–3%annuallyofthesebuildingsarebeingreplacedbynew-build[3–5]. Thus,reducing domestic energy consumption and integrating renewable energy sources for energy savings has becomeaninternationaltrendasastrategyforreducingthelevelofpeakdemandfromtheelectricity grid. Therefore,energyefficiencyinbuildingsandnet-zeroenergybuildings(NZEB)conceptshave attractedintenseattentionfromresearchers,architects,andengineers. NZEBreferstoabuildingconsumingequal(orless)energythanwhatitproduceswithinasingle year. Theideaofstartingatime-periodassessmentforNZEBthatreferstoayearlybasisiscritical, Sustainability2017,9,399;doi:10.3390/su9030399 www.mdpi.com/journal/sustainability Sustainability2017,9,399 2of15 so as to allow variations in different seasons of the year. Therefore, the highest amount of energy needsinthewinter(duetolowersungains)forheatingcanbebalancedattheendofyearbyenergy deliveredfromrenewableenergysourcesduringthesummer[6]. TherearemanydefinitionsforNZEB; itdependsonthespecificgoaloftheprojectandthedifferentpointsofviewsoftheownersandthe designteam,theeconomicissues,andenergycoststhataremoreimportantfortheowners. However, thenationalenergymembersareinterestedinrenewablesourcesofenergy,anddesignersaremore interestedinrequirementsandenergycodes[7]. Asageneraldefinition,net-zeroenergy(NZE)is theannualenergybalancebetweentheoperation/demandedenergyandthegeneratedenergyfrom therenewablesources[8],andanet-zeroenergybuilding(NZEB)isabuildingthatproducesenough energytosustainitself. ConsideringNZEBconceptintorenovatingpublicbuildingmaximizethe energyefficiencyinexistingbuilding,inaddition,sinceexitingbuildingswilllastformoredecades, optimizingtowardsNZEalsoshareinthesustainableurbandevelopment. Nowadays,variouscountriesaretryingtoapproachnet-zeroenergyconceptsintheirbuildings and are planning to achieve this goal within a certain time. The European Union (EU) Energy PerformanceofBuildingsDirective(EPBD)statedintheirofficialjournalthatallnewbuildingsin European countries should be NZEB by the end of 2020 [9]. Regardless of the new construction, existingbuildingsarethelargestenergyconsumerswhicharestilloperating,butrequirerenovatingin ordertodecreasetheirenergyneeds;hence,EPBDsettheexistingandpublicbuildingsasastarting targetinEuropeancountries[10,11]. Many guidelines for early design stages have been set in order to achieve this goal for new construction[12];differentstrategiesandframeworkshavebeenprovidedtoachievedesirableresults in existing buildings [13] and there are many examples of retrofit projects that achieve this goal. However, each project applies different strategies according to its type, local climate, and other measurements. Winter represents the peak energy demand load curve in North Cyprus, which is basicallyconsumedbyresidentialsector[14]accordingtotheworkinghours. Staticsshowsif5%ofthe existingresidentialbuildingsimplementstand-alonerenewableenergyproductionsystem,thiswill leadto4%decreaseinthepeakdemand[1]. Intermsofpublicbuildings,mainoperatingschedulesis duringthedaytime,wherethemaximumbenefitscanbegetfromphotovoltaicstoprovidedemanded energy. Assuch,itisimportanttoregeneratethedesignofexistingbuildingsanddevelopstrategies towardsthezeroenergyconceptsinN.Cyprus. ThestudiestowardsNZEBstatedintheliteratureareonlyfordesigningnewbuildingsorexisting two-story residential buildings [15–17]. Thus, this study focuses on how well public buildings in North Cyprus meet the Energy Performance of Building Directive (EPBD) stated goals for 2020. Forthispurpose,atypicalbuildinglocatedattheEasternMediterraneanUniversity(EMU)Facultyof Architectureischosenasacasestudy. 2. LiteratureReview AccordingtoProfessorFrançoisGrade’sresearchaboutNZEBdesign[17],therearetwomajor factorsthatmustbeconsideredandanalyzedintheearlydesignphasestoachieveNZEBtargets: (1) Optimizingthepassivesolarenergyconceptstoreducebuildingenergyconsumption,and (2) Generatesufficientelectricalenergybyrenewableenergysourcestoreachenergybalance. Integration of passive techniques acts as a critical apparatus towards zero energy building design goals. It has direct influences on thermal balance and lighting loads, which affects the electro-mechanical systems of the building. This creates a noticeable indirect reduction in heating/cooling, lighting, and ventilation energy consumption that is sufficiently balanced by renewableenergysystems[17]. Since implementing the passive solar energy in the building influences the loads in the electro-mechanicsystem, passivestrategiestakesavitalpositioninNZEBdesign. Studiesproved thatefficientintegratingofpassiveshadingcontrolsinthebuildingenvelopeandbuildingelements Sustainability2017,9,399 3of15 dramaticallyreducetheannuallightingenergydemandby40%,andthispercentageincreasesto60% ifautomatedshadingdevicehavebeenintegrated[18]. Moreover,effectivecontrollingofdaylightcan reduce10%–20%oftheannualcooling/heatingenergydemand[18]. Furthermore,itindirectlyaffects challengesfacingenergyproducedbyrenewableresources. Ingeneral,theconsiderationofoptimizing passiveheatingandcoolingstrategiesarecombinedtogetherinordertopreventglarebydirectsunlight andoverheatingincoolerseasons. Inaddition,thethermalmassofthebuildingprovidesamethodto achievepassivecooling,whichsignificantlyreducesthecoolingloads[19,20]fortakingadvantage ofdaylightandnaturalventilation. Meanwhile,inhotseasons,distinguishedbytheuseofthefresh airandthebuilding’slossheatatnightitisthenon-useofthewalls’thermalinsulationthatprevents heatlossduringnighttime. Theapplianceofpassivestrategiesconstitutesmanychallengescorrelated to the building type, climatic conditions, CO emission levels, and optimum energy performance, 2 consequently,bycollaborativeresearchwiththeSolarXXIproject,builtin2006atLNEGCampusin Lisbon[21],whichclaimstobeanexampleofalowsolarenergybuildingintegratinginertstrategies forheatingandgeo-coolingsystemstoachieveNZEB[22]. Photovoltaicpanelsareintegratedinthe facadedesignwithaheatingsystemforthermalbalanceinwinter. Otherwise,ageo-coolingsystem (groundtubes)assistedbynightcoolingapproachesworktogethertocoolthebuildinginsummer. Furthermore,openingsizesandglazingspecificationsinthefacadehasadirectinfluenceonthe indoorthermalcomfortinwarmclimateconditions[23],whichaffectsthecoolingandheatingloads, andontheuseofdaylightwhichaffectsthelightingloads[24]. Intermsoftheventilationimpact onbuildingenergyconsumption,recentresearchusingfordynamicthermalsimulationsEDSLTas softwarefoundthepercentageofthewindowopenings’influenceonthethermalcomfortandenergy consumptionforcoolingandheatingfordifferentseasonsinahotandhumidclimate[25]. These resultsfoundthatloweringthewindowtowallratio(WWR)decreasedtheenergyconsumptionanda largeWWRincreasesenergyconsumption. However,alargeWWRincreasesenergyconsumptionin allclimates[26],thesmallWWRaffectsthedaylightingefficiency[27],andlightingconsumptioncan bemanagedbyusingcontrollableelectriclightingsystemsandoptimumshadingdevices,especially forlargeglazingsizes[28]. However,energyconsumed,inthiscasebyHVACsystemsforheating andcooling,mustkeptinmind. TheU-valueandG-valueoftheglassareimportantfactorsinterms of cooling and heating energy consumption, and lowering the U-value respectively decreases the energyconsumptionfordifferentWWRandincreasestheenergyefficiencyofthebuilding[29]. Most ofNZEBsinresearchprojectsapplyyearlybalancetosupporttheirusedmethods[30],andthesame conceptisappliedinthispapertoinvestigateoptimizingpublicbuildingtowardsnetzeroenergy. Themethodologiesandthecasestudybuildingwillbedescribedinthefollowingsections,along withthefindingsoftheobservationsandcomputersimulations,andadiscussionaboutthesuitable designoptimizationsandpotentialforachievingnet-zeroenergyinthebuilding. 3. Methodology Casestudyproblemsolving,andsurveyingmethodologieswillbeusedinthisresearchinorder toreachconclusions. Firstly,thebuildinghasbeensurveyedandanalyzedthroughobservation,which is presented via photos and computer simulations via Autodesk Ecotect analysis [31] to find and definetheproblemsstatistically. Thedatawillbeanalyzedusingbothqualitativeandquantitative methods to accurately determine the energy problems. Secondly, an energy optimization of these problemshasbeendonethroughanenergymodelingsimulation(eQuestenergysimulationtool[32].) based on interviews managed with expert architects in energy efficient buildings and renewable energytechnologies,inadditiontothepassiveoptimizationprinciplesfoundintheliterature. Finally, the energy simulation results after optimization are discussed to make an energy comparison of existingsituationandalternativesenergysavingstohelpdevelopthestrategyofachievingnet-zero energyuseinthecasestudy. ThecasestudyislocatedinCyprus-Famagusta,oneofthelargestislandsintheMediterranean Sea(35◦ Latitude,33◦ Longitude). Withahumid-hotclimate,thetemperaturerisesabove30◦Cinthe Sustainability2017,9,399 4of15 Sustainability 2017, 9, 399 4 of 15 hhootttteesstt mmoonntthhss dduurrininggt htheety tpyipcaiclaslu smummemresre asseoans,oann, danthde ttheme pteemraptuerreatduercer edaescersetaose3s◦ Cto in3 t°hCe wini nthteer wseianstoenr s(eFaigsounre (F1i)g,ausres t1a)t,e ads isntattheedC iny pthrue sCmypetreuosr moleotgeiocraollsotgatiicoanl srteaptioornt arebpoourttF aabmouagt uFsatmaa[3g3u]s.ta [33]. AAccccoorrddiinngg totoit siltosc altoiocant,iFoanm, aFgaumstaaghuasstah ighhass olhairgehn ersgoyladr ureinnegrgthye wdiunrtienrg( 5.t2h6ek Wwhin/tmer2 /(d5a.2y6) , kwWhihc/hmr2i/sdeasyto), 7w.1h2ickhW rihs/esm t2o/ 7d.1a2y kdWurhin/mg2t/hdeasyu dmumrinerg stehaes osunm. mer season. FFiigguurree 11.. TThhee aannnnuuaall ggrraapphh ooff FFaammaagguussttaa’’ss cclliimmaattee [[3344]].. 3.1. Case Study: Observation Findings and Analysis 3.1. CaseStudy: ObservationFindingsandAnalysis The Colored Building is an educational building with a rectangular shape and has three floors, TheColoredBuildingisaneducationalbuildingwitharectangularshapeandhasthreefloors, containing a library and a seminar room, and most of spaces are studios for architectural students. containingalibraryandaseminarroom,andmostofspacesarestudiosforarchitecturalstudents. TThhee bbuuiillddiinngg iiss oorriieenntteedd 3311°◦ ttoo tthhee nnoorrtthh aanndd 5599°◦ ttoo tthhee eeaasstt.. As shown in Tables 1–5, through description of the case study design elements, as in the Figures As shown in Tables 1–5, through description of the case study design elements, as in the 2–6, the evaluation is based on NZEB design strategies in the literature review and elements that Figures2–6,theevaluationisbasedonNZEBdesignstrategiesintheliteraturereviewandelements affect the energy efficiency of the building. thataffecttheenergyefficiencyofthebuilding. TTaabbllee 11.. AAnnaallyyssiiss ooff tthhee nnoorrtthhwweesstt ffaaccaaddee ooff tthhee ccaassee ssttuuddyy.. Observed Facts Author Evaluation ObservedFacts AuthorEvaluation The Colored Building elevations have the The large windows increase interior ThesaCmoelo trreedatBmueinldtsin fgaceilnegv aatlilo dnisrehcatvioentsh, ewsiathm e dTahyeliglahrtgiengw einffdicoiwensciyn,c trheoasuegihn ttehriiso craduasyelsi ghting trealatmrgeen ptsarfatsc ionfg wailnlddoirwecst,i oannsd, nwoi tshhlaadrginegp arts oevfefirchieenatciyn,gth ionu sguhmtmhiesrc, awuhseicsho lveeardhse atoti nang in ofwdeinvdicoews hs,aavned bneeons huasdedin ognd eexvtiecreisorh afavceadbeeesn. insucrmeamsee ri,nw choioclhinlgea ednsetrogya ndeinmcraenads e[2in6]c. o oling usedonexteriorfacades. energydemand[26]. SSuussttaaiinnaabbiilliittyy 22001177,, 99,, 339999 55 ooff 1155 Sustainability 2017, 9, 399 5 of 15 Figure 2. Northwest facade of the case study building. Figure2.Northwestfacadeofthecasestudybuilding. Figure 2. Northwest facade of the case study building. Figure3.Southwestfacadeofthecasestudy. Figure 3. Southwest facade of the case study. Figure 3. Southwest facade of the case study. TTaabbllee 22.. AAnnaallyyssiiss ooff tthhee ssoouutthhwweesstt ffaaccaaddee ooff tthhee ccaassee ssttuuddyy.. Table 2. Analysis of the southwest facade of the case study. Observed Facts Author Evaluation ObservedFacts AuthorEvaluation Observed Facts Author Evaluation 1 The building is surrounding by trees at the 1 The building is surrounding by trees at the 1. Thebuildsoinugthiseassutr aronudn sdoiuntghwbyestrt eeelsevaatttihoens, which southeast and southwest elevations, which This causes overheating in southeasdtraonpds ssooumthew shesatdeel eovna ptiaorntss, owf hthiceh building. This causes overheating in dro2p ssomdTrheoopsuhsg ashdo,e maote nm sphidaadrdtaesy oo onfn tph taehrbets uf aoilcfd atidhneegs .b tuhialdt ifnagce. Thistthhcaeeu sssuuemmsmmoveeerrr,,h wweahhtiiiccnhhg iiinnnccrrtheeaaessseeu mmer, 2 Though, at midday on the facades that face the cooling energy demand. the sun direction, radiation shines verticalwlyh ichthinec croeaoslientgh eenceoroglyin dgeemnearngdy. demand. the sun direction, radiation shines vertically 2. Though,oant mgliadzdinagy ponartths.e facadesthatfacethe on glazing parts. sundirection,radiationshinesverticallyon glazingparts. Sustainability2017,9,399 6of15 Sustainability 2017, 9, 399 6 of 15 Sustainability 2017, 9, 399 6 of 15 FFiigguurree 44.. TTyyppiiccaall ssttuuddiioo iinntteerriioorr vviieeww.. TTaabbllee 33.. AAnnaallyyssiiss ooff aa ttyyppiiccaall iinntteerriioorr vviieeww ooff tthh ee ssttuuddiioo.. Observed Facts AuthorEvaluation Figure 4. Typical studio interior view. ObservedFacts AuthorEvaluation 1 Typical interior window blinds are being used for These is insufficient shading 1. theT sytpuidcaiolisn’ tweriinordwToawibnlsde o i3nw. tAebnrlnainlaydlslsiysa ordfe uab etey itpnoigc tahul siene tldearciokr ovife w of btheec astuusdeio t. hey obstruct daylight extfeorriothr eshstauddiinosg’ dwOeinvbdisceoerwsv setdoin Fptearrconttsaelclyt dthuee utosethrse fromTh eseiasninds Authfufietch vioeinrstuEsvahal aleudfaifnitcigoiebnne ccayu osef 1o velarThcykepaoitcfiaenlx gitn eatreniordiro sgrh lwaadrineind. gowde bvliicnedsst oarper boeteinctgt uhseed fotrh eyoTbhusestsreeur cisst, idinnascyurlfiefgaihcsitienanngt d sthhthaede livingigsh utainlg usersfromoverheatingandglare. 2 Artitfhicei astlu ldigiohst’i nwgin ids obwesin ingt eursneadll yd udurien tgo tthhee ldaacky .o fe fficiebnedccyeamuosfaeu ntshdee r[ys1, o8inb].sc tr reuacstin dgaythlieght exterior shading devices to protect the users froml ightianngdd tehme avnisdu[a1l8 e]f.ficiency of 2. AorvtiefirchieaaltliiTnggahb tailnnegd 4 i.gs Albanereian.l ygsuiss eodf idnuterrinngalt hvieedwa yo.f the atriuumse arsn, din ccorreraisdionrgs .t he lighting 2 Artificial lighting is being used during the day. demand [18]. Observed Facts Author Evaluation Table4.Analysisofinternalviewoftheatriumandcorridors. A large skylight is plaTcaebdl ei n4. tAhnea laytsrisiu omf in otefr nthale v iew of Tthhei ast riinusmu affnidc iceonrrti duosras.g e of artificial lighting building to provide enough daylight to corridors increases lighting energy consumption OObbsseerrvveeddF Faacctsts AuAthuothroErv Ealvuaalutiaotnion and inside deep spaces, though lamps are being and causes overheating of the atrium and A large skylight is placed in the atrium of the This insufficient usage of artificial lighting Alargeskylightisplacedintheatriumof Thisinsufficientusageofartificiallighting usedb dutuhiledriibnnuggi lttdohi enp grdotavoyidp. ero evnidouegehn oduagyhligdhaty tloig chotrtroidorsi ncircneocarsreeraisdsleiogsr hlsit gidnhugtirneinnge ger ngtehyrecg oysnu csmounmmsupemtrio.p ntiaonnd ancdo rirnisdiodres daenedpi snpsaidceesd, ethepousgpha cleasm,tphso aurgeh being cauasneds ocvauershees aotvinegrhoefatthinega torfi uthme aantrdium and usleadm dpusrairnegb tehien gdauys.e dduringtheday. corcroidrorirdsodrus rdinugrinthge tshuem summemr.er. Figure 5. Internal view of atrium and corridors. FigFuigruer5e. 5I.n Inteternrnaall vviieeww ooff aattrriiuumm aanndd cocrorridriodrso.r s . Sustainability2017,9,399 7of15 Sustainability 2017, 9, 399 7 of 15 Sustainability 2017, 9, 399 7 of 15 (a) (b) Figure 6. (a) Northeast façade; and (b) internal view from the northeast facade. Figure6.(a)Northeastfaçade;and(b)internalviewfromthenortheastfacade. Table 5. Analysis of the facade construction material. Table5.Analysisofthefacadeconstructionmaterial. (a) (b) Observed Facts AuthorEvaluation 1 Typical winFdigouwOre mb 6s.ae (traev)r eiNadlosFr aathrcetes amsta fdaeç aodf es;i nangdle (b) intePronoarl vinieswul afrtoiomn Atohfue wt nhioonrrdtEhoevwaassl tui nfaa ttcihaoidnse b. uilding clear 4 mm thickness glass, with PVC frames. negatively influence the level of heating loss during 2 1. WaTlylsp iacrael mwainddeo owutm oaf t2eT0rai cabmllse at 5hr.ei cAmkn araedldyes boisrf ioscifkn t.gh lee facadweP iocnootnresrin tarsunucdlta ihotienoa nmtionafgtew griaianilnd. odwursiningt shuismbmuielrd, iwnghich 3 Noc leexatrra4 imnsmultahtiicoknn mesastgerlaiaslss, awriet hbePiVngC ufrsaemd.e s. innecrgeaatsivee tlhyei ncoflouleinngce/htehaetilnegv eelnoefrhgyea dtienmgalonsds. Observed Facts AuthorEvaluation duringwinterandheatinggainduringsummer, 3.21.2 C. asTeW ySpatuilcldsayla :wr eSinimmdaoudwlea tmoiouantt eoFrfiian2l0ds icanmrges tm haiancdkde rA eodnf asbilnryigscilkse. Pwohoirc hinisnuclraetaiosne othf ewcionodloinwgs/ ihne tahtiisn gbuilding clear 4 mm thickness glass, with PVC frames. neengeargtiyvedlyem inafnlude.nce the level of heating loss during 3. Noextrainsulationmaterialsarebeingused. 2 AsW ita hllsa sa rbe emenad set oautet do fb 2e0f ocmre t hinic kth ree dM beritchko. dologyw sinetcetri oannd, thheea tcinagse g asitnu dduyr ihnags s bumeemne ar,n walhyiczhe d via com3 putNero esxotfrtaw inasruel attiooonl sm a(tAeruiatolsd aersek b eEincgo utescetd). accoridnicnrega steo t hiet sc ooolriinggi/nhaela tionrgi eennteartgiyo nd emanadnd .w eather 3.2. CcaosnedSittiuodnys.: BSyim eunltaetriionng Ftihned binugilsdainngd eAnnvaellyospise parameters and material specifications and glazing 3.2. Case Study: Simulation Findings and Analysis transparency, the program can analyze the inputs and provide accurate data on an annual basis As it has been stated before in the Methodology section, the case study has been analyzed whichA hse lipt sh taos ebveaelnu sattaet eddif fbeerfeonrte pina stshive eM deetshiogdno elloegmye snetcst itohna,t tihnef lcuaesnec set uthdey e hnaesr gbye eenff aicnieanlyczye dof v tihae via computer software tools (Autodesk Ecotect) according to its original orientation and weather bucoilmdipnugt.e r software tools (Autodesk Ecotect) according to its original orientation and weather conditions. Byenteringthebuildingenvelopeparametersandmaterialspecificationsandglazing conTdhiteio annsa. lByys ise notfe rdianygl itghhet ibnugi lhdains gb eeennv ecloonpdeu pcaterdam aectceorrsd ainngd tmo athteer isaul ns ppeactihfi cdautiroinngs tahned ygelaarz ianngd transtphtaerra etnrnascpnyas,rmethnitectaypn, rctohe gea rnpadrmo sgiczraaenms o acfn atanhl eya zwneailntyhdzeoew itnhsp ei nui ntaspllua ontsrd ieapnntdrao tpvioriodnvse.i daTech ceau crrceaustruealttdes asdthaaotoaw n omna noarnae n tahnnaunnau l1a1lb 0ab0sa islsuisxw hich helpsiltlwouhmeivcinhaa lhunecaletp eso dft oid fefaevyraleilgunhatttpein adgsi fsifniev rteehndet episnaitsgesnriivoeerl edsmepsaeicgnents s,e lttehhmea etynientlslfl otuwhae tnc oicnleoflrtu hereannceegn ete hrsegh yeonweefsrfi gacy i heeifngfichcy ieleonvfceytlh oaefb btohuveei l ding. Tthbhauet ilardeniqnauglyi.r seids, oafs dsaeyenli ginh tFinigguhrea s7 bdeueen tcoo nthdeu lcatcekd oaf cecxotredriionrg sthoadthinegs udnevpicaetsh, edsupreicniaglltyh oefy tehaer and thetrsaonusthmwTithetseat n afncaeaclayadsniesd, oswfi zdheiacsyhlo igffhatcthienesg w thhiaens dmboeoewsnts csionunnda ulrlcaotderdiiae tanicotcnao triddouinnrgsin. tgoT htthheeer sesusunum lptmastehsrh dosuewrainsmogn ot hraeen ytdhe aacrna au1ns1de0s 0lux illumoinvtheaernh tcereaantoisnfmgdi attotya ltnihcgeeh iatnintndegr sioiinzre stsph oaefc ietnhste. e wriionrdsopwasc iens ,atllh oeriyeenltlaotwioncso. lTohrer raensgueltss hshoowws maohrieg thhalenv 1e1l0a0b luoxv ethat illuminance of daylighting in the interior spaces, the yellow color range shows a high level above required,asseeninFigure7duetothelackofexteriorshadingdevices,especiallyofthesouthwest that required, as seen in Figure 7 due to the lack of exterior shading devices, especially of the facade,whichfacesthemostsunradiationduringthesummerseasonandcausesoverheatingtothe southwest facade, which faces the most sun radiation during the summer season and causes interiorspaces. overheating to the interior spaces. Figure 7. Daylight analysis of typical floors (first and second floors) of the case study. Figure 7. Daylight analysis of typical floors (first and second floors) of the case study. Figure7.Daylightanalysisoftypicalfloors(firstandsecondfloors)ofthecasestudy. Sustainability2017,9,399 8of15 Sustainability 2017, 9, 399 8 of 15 The skylight in the atrium provides acceptable daylight levels (red colour range) to the deep spacesinthebuildingsuchasthecorridorsduringtheday. Onanannuallybasis,thisshowsthatthe The skylight in the atrium provides acceptable daylight levels (red colour range) to the deep artificiallightsarenotrequiredduringtheday. spaces in the building such as the corridors during the day. On an annually basis, this shows that the Intermsoftheinteriorenvironment,onanannualbasis,Figure8showshourlytemperatures artificial lights are not required during the day. whicharIene txearmmsin oefd thtoe dinetfienrieotrh eentveimropnemraetnut,r eonv aarnia abnlenubaelt wbaeseins, sFeiagsuornes 8i nshthoweisn hteoruiorlrys tpeamcepse.rTathuersees are usedwthoiccha lacruel aexteamthienecdoo tloi ndge/fihneea tthien gtelmoapderdaetumrea nvdareidabtlhea bteptwroeveind esesatshoenrsm inal tchoem inftoerrtiofor rspoaccceusp. aTnhtess,ea nd detearrme iunseesdt hteo toctaalcluhleaatet gtahien caococolirndgi/nhgeattointgh elobaudi lddienmgacnodnesdtr uthcatito nprmovaitdeersia ltsh(ewrmaallls aconmdfworitn dfoorw s). Theorcecsuupltasnatsr,e aansd fdoelltoerwm:ines the total heat gain according to the building construction materials (walls and windows). The results are as follow: (1) FromNovembertoMarch(winterseason): theaverageinternaltemperatureisbetween8◦Cand (1) From November to March (winter season): the average internal temperature is between 8 °C 15◦ C. and 15 ° C. (2) FromApriltoOctober(summerseason):theaverageofinternaltemperatureincreasestobetween (2) From April to October (summer season): the average of internal temperature increases to 20◦bCetwaneden3 230◦ °CC. and 33 °C. FiguFriegu8r.e 8H. oHuorulyrlyt etmemppeerraattuurree aannaallyyssiiss dduurirning gthteh eyeyaer.a (rA. )( DAu)rDinugr tihneg wthinetewr;i nantedr ;(Ba)n ddu(rBin)g dthuer ing thessuummmmeerr.. Sustainability2017,9,399 9of15 Accordingly,electricenergydemandforheating/coolingincreasesduetothefollowingbuilding envelopesolargainbreakdownchart,asseeninFigure9,whichshowswheretheheatlossorgain comingfrom: Sustainability 2017, 9, 399 9 of 15 • About60%(redcolor)ofthebuildingthermallossinwinteriscausedbymaterialconductivity Accordingly, electric energy demand for heating/cooling increases due to the following building because of the poor thermal insulation while just 7% of the total gain is from the same factor envelope solar gain breakdown chart, as seen in Figure 9, which shows where the heat loss or gain comininsgu fmromm:e r . • About 12% gain is from sol-air (brown color) because of the monocular heating of the  About 60% (red color) of the building thermal loss in winter is caused by material conductivity bubielcdaiunsge mof athteer piaolo.r thermal insulation while just 7% of the total gain is from the same factor in • Disruemctmseorl.a rradiation(yellowcolor)isresponsiblefor38%ofheatgainthroughtheyearbecause  ofAthboeulta 1c2k%o gfaeixnt iesr firoorms hsoald-aiinr g(baronwdnt hcoelowr)i nbedcoauwsse otrfa tnhes pmaorneonccuyl.ar heating of the building material. • Openingsizes,whichhaveadirectimpactonventilation,aremajorfactorscausinga26%drop  Direct solar radiation (yellow color) is responsible for 38% of heat gain through the year (greencolor)intotalthermallossduringthewinter. because of the lack of exterior shading and the windows transparency. •  AbOopuetni3n1g% sizoefsg, waihnicihs hfraovme ai ndtireercnt aimlsppaactc eosn (vbelnuteilactoiolno,r a)raen mdaajosr mfaactlolrasm caouusinntgo af 2g6a%in daronpd lossisfrom th(egrdeiesnt rciobluort)i oinn tobteatlw theeermnadl ilfofsesr ednutrisnpg athcee sw(iinntteer.r -zonalindicator).  About 31% of gain is from internal spaces (blue color) and a small amount of gain and loss is from the distribution between different spaces (inter-zonal indicator). Figure 9. Yearly gains breakdown of the case study. Figure9.Yearlygainsbreakdownofthecasestudy. Sustainability2017,9,399 10of15 Sustainability 2017, 9, 399 10 of 15 In addition to the previous data findings, an interview was organized with the technical office Inadditiontothepreviousdatafindings,aninterviewwasorganizedwiththetechnicaloffice engineer at Eastern Mediterranean University to provide the technical data of the building. Taking engineeratEasternMediterraneanUniversitytoprovidethetechnicaldataofthebuilding. Takinginto into consideration the internal loads and operating timetables, artificial light efficiency, in addition considerationtheinternalloadsandoperatingtimetables,artificiallightefficiency,inadditiontothe to the HVAC systems and operating schedules, the building was simulated in software (eQuest) to HVACsystemsandoperatingschedules,thebuildingwassimulatedinsoftware(eQuest)toanalyze analyze the annual energy consumption of the case study to accurately understand the energy theannualenergyconsumptionofthecasestudytoaccuratelyunderstandtheenergyconsumption consumption capacities on an annual basis. The energy breakdown was as follows, and as seen in capacitiesonanannualbasis. Theenergybreakdownwasasfollows,andasseeninFigure10. Figure 10. • Greater than 30% of the annual consumed energy is for cooling during the summer due to  Greater than 30% of the annual consumed energy is for cooling during the summer due to insufficient windows insulation and low thermal heat loss materials that are used for walls, insufficient windows insulation and low thermal heat loss materials that are used for walls, as asmentionedaboveinFigure9. Ventilationhasnoeffectoncoolingloadduringsummer. mentioned above in Figure 9. Ventilation has no effect on cooling load during summer. • Eigh teenEipgehrtceeennt opfetrhceenatn nouf atlheen earngnyuiasl ceonnesurgmye dis focornlisguhmtinedg dfoure tliogthhteinlgac kduoef etxot etrhioe rlsahcakd oinf gexterior devices(duringthedayblindsarebeingusedtopreventoverglare,soartificiallightisbeing shading devices (during the day blinds are being used to prevent over glare, so artificial light is turnedon)inadditiontotheinsufficientusageofartificiallightingincorridorsduringthedayas being turned on) in addition to the insufficient usage of artificial lighting in corridors during the seeninFigure5. day as seen in Figure 5. • Onl y8%Oonflyth 8e%a nonf uthael eannenrugayl uensaegrgeyis ufsoarghee iast finorg hdeuartiinngg tdhuerwinign ttehre. winter. Figure10.Annualelectricconsumptionpercentage. Figure 10. Annual electric consumption percentage. TheelecTthriec ecloencstruimc cpotniosnumpeprtimono nptehr wmaosnftohu wndasa fsofuonlldo wass ,foalnlodwass,s ahnodw ans isnhFoiwgunr ien1 F1i:gure 11: • Hig hanHniugahl eannenrugayl ceonnesrugym cpotniosnum(1p16ti0onM (W11h6/0y MeaWr)h./year).  Energy consumed during the summer (July–September) is greater than the energy consumption • Energyconsumedduringthesummer(July–September)isgreaterthantheenergyconsumption during the winter (November–February). duringthewinter(November–February).  Maximum energy consumption is about 140 MWh in August. • Maximumenergyconsumptionisabout140MWhinAugust.

Description:
to achieve net-zero energy in existing buildings, case study and problem solving methodologies were . (1) Optimizing the passive solar energy concepts to reduce building energy consumption, and . The analysis of daylighting has been conducted according to the sun path during the year and.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.