ebook img

Optimization Based Clearance of Flight Control Laws: A Civil Aircraft Application PDF

452 Pages·2012·7.274 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optimization Based Clearance of Flight Control Laws: A Civil Aircraft Application

Lecture Notes in Control and Information Sciences 416 Editors:M.Thoma,F.Allgöwer,M.Morari Andreas Varga, Anders Hansson, and Guilhem Puyou (Eds.) Optimization Based Clearance of Flight Control Laws A Civil Aircraft Application ABC SeriesAdvisoryBoard P.Fleming,P.Kokotovic, A.B.Kurzhanski,H.Kwakernaak, A.Rantzer,J.N.Tsitsiklis Editors Dr.AndreasVarga Dr.GuilhemPuyou DLR-Oberpfaffenhofen AIRBUS GermanAerospaceCenter StabilityandControlDepartment InstituteofRoboticsandMechatronics 316routedeBayonne 82234Wessling 31060ToulouseCedex03 Germany France E-mail:[email protected] E-mail:[email protected] Prof.AndersHansson LinköpingsUniversitet DepartmentofElectricalEngineering DivisionofAutomaticControl SE-58183Linköping Sweden E-mail:[email protected] ISBN978-3-642-22626-7 e-ISBN978-3-642-22627-4 DOI10.1007/978-3-642-22627-4 LectureNotesinControlandInformationSciences ISSN0170-8643 LibraryofCongressControlNumber:2011934146 (cid:2)c 2012Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthemate- rialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting, reproduction onmicrofilmor inanyother way, andstorage indatabanks. Dupli- cationofthispublicationorpartsthereof ispermittedonlyunder theprovisions oftheGerman CopyrightLawofSeptember9,1965,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.ViolationsareliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoes notimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Typeset&CoverDesign:ScientificPublishingServicesPvt.Ltd.,Chennai,India. Printedonacid-freepaper 987654321 springer.com Foreword As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality. Albert Einstein Since theearlydaysofaviation,engineerswithinventivetalentshadtoover- cometremendouschallenges.Frombuildingvehiclesthatcanflyinacontrol- lablemannerdesignedandflownbypioneerslikeLilienthal,Wrightbrothers, Sperry in the beginnings, to developing todays modern comfortable and re- liable vehicles for daily routine all-weather operations (Airbus, Boeing and others), there were many creative efforts to improve performance (aircraft size,endurance,speed),minimizestructuralweight,providenecessarythrust, andguaranteesafeflightoperations.Nowadaysalltheseinventionsassurethe high mobility of the modern human society in a global world. The aeronau- tical challenges were drivers for many new technologies and methodologies that are commonly used in other industries today. In the last three decades, the requirements for the design of high-perfor- mance flight control systems that enhance automation of flight, initiated a number ofingenious technologicaldevelopments.Flight controllaw designis oneoftheareaswhereaeronauticalengineersarepioneeringnewtechnologies. During development(designandtest) offlightcontrollaws,engineersrely onmathematicalmodels.Inevitably suchmodels cannotmimic allaspectsof a highly complex, physical plant as a modern high-performance jet airplane andits environment(atmosphere,airtraffic, etc.) with absolute fidelity. The abovequotationfromEinsteindescribesthe fundamentaldifficulty that con- trolengineersarefacing,whenstrivingtheclearanceofflightcontrollawson basis of mathematical models. However,engineers(namedaftertheLatinwordingenium,meaninginnate quality,especiallymentalpower,henceacleverinvention)oftenfindsolutions eventothemostchallengingproblems.Toprovethatanaircraftissafetofly VI Foreword they develop aircraftdynamics models with quantified uncertainties and ap- ply adequate mathematical theories for their analysis. Those models can be usedtoverifythatthecontrollawsoperateasspecifiedevenwhendeviations from the nominal conditions occur. In addition, test engineers consider all imaginable test conditions using experience from the past including knowl- edge about abnormal cases, incidents and accidents. This approach extends the uncertain parameter space with many additional test cases, with special care to investigate the critical ones. The huge amount of possible parameter combinations as well as the presence of model nonlinearities result in an in- credibly high number of test cases to be checked for the clearance of flight control laws. The objective of the EC-sponsored project COFCLUO aims at mastering this Herculean task, by applying efficient optimization-based search techniques to discover hidden weaknesses of flight control laws and to determine worst-case parameter combinations to aid possible control law redesigns. Eventually the clearance of control laws is achieved, thus guaran- teeing the safe aircraft operation. This book describes and demonstrates the main achievements of the COFCLUO project. When you study it, you will find out that this endeav- our has significantly enhanced the state-of-the-art of the clearance of flight controllawsby providinginnovativeideas andadvancedanalysistechniques. Thereportedprojectachievementsareaconvincingproofofaverysuccessful European cooperation. Berlin, January 12, 2011 Robert Luckner Preface ThisbookaddressestheClearanceOf FlightControlLawsUsingOptimisa- tion(COFCLUO)andsummarizesthemainachievementsoftheECfounded 6th Framework Programme COFCLUO project. It is well known that be- fore an aircraft can be tested in flight, it has to go through a rigorous certi- fication and qualification process to prove to the authorities that the flight control system is safe and reliable. Currently significant time and money is spent by the aeronautical industry on this task. An important part of the certification and qualification process is the clearance of flight control laws (CFCL).The overallobjectiveofthe COFCLUOProjectwastodevelopand apply optimisation techniques to CFCL in order to improve efficiency and reliabilityofthecertificationandqualificationprocess.Theapplicationofan optimisation-basedapproachreliesonclearancecriteriaderivedfromthecer- tification and qualification requirements. To evaluate these criteria different types of models of the aircraft are employed, which usually both serve for clearance as well as for controllaw design purposes.The developmentof dif- ferentmodelsandofsuitable clearancecriteriawerethereforealsoobjectives of the project. Because of wider applicability, the optimisation-based CFCL will open up the possibility to design innovative aircraft that today are out oftheapplicationfieldofclassicalclearancetools.Optimisation-basedCFCL will not only increase safety but it will also simplify the whole certification and qualification process, thus reduce costs. The speedup achieved by us- ing the new optimisation-based approach also supports rapid modelling and prototyping and reduce ”time to market”. The COFCLUO project success- fullycontributedtotheachievementofatop-levelobjectivetomeetsociety’s needs for a more efficient, safer and environmentally friendly air transport byprovidingnewtechniquesandtoolsforsignificantlyimprovedtechnologies for CFCL. May 2011 Andreas Varga Anders Hansson Guilhem Puyou Contents Part I: Clearance of Civil Aircraft 1 Introduction............................................. 3 Anders Hansson, Andreas Varga 1.1 Background ......................................... 3 1.2 The COFCLUO Project............................... 7 1.3 Outline of the Book .................................. 8 References ................................................ 9 2 Clearance Benchmark for a Civil Aircraft................ 11 Guilhem Puyou, Yannick Losser 2.1 Introduction......................................... 11 2.1.1 Nonlinear Benchmark ......................... 12 2.1.2 Integral Benchmark ........................... 12 2.2 Description of Flight Control Laws ..................... 13 2.2.1 Flight Control Laws Philosophy................. 14 2.2.2 Longitudinal Axis............................. 15 2.2.3 Lateral Axis.................................. 16 2.3 The Nonlinear Benchmark Model....................... 17 2.3.1 Flight Envelopes.............................. 17 2.3.2 Pilot Inputs and Pilot Model ................... 18 2.3.3 Actuators and Sensors......................... 19 2.3.4 Flight Mechanics.............................. 19 2.3.5 Control Laws................................. 22 2.4 Clearance Criteria for the Nonlinear Benchmark.......... 23 2.4.1 Un-piloted Aircraft Stability.................... 23 2.4.2 Manoeuvrability Requirements for the Longitudinal Axis............................. 25 2.4.3 Flight Domain Protection...................... 26 2.5 The Integral Benchmark Model ........................ 27 2.5.1 Flexible Aircraft Model........................ 28 X Contents 2.5.2 Mass Configurations and Flight Points........... 29 2.6 Clearance Criteria for the Integral Benchmark ........... 30 2.6.1 Aeroelastic Stability........................... 30 2.6.2 Stability Margins ............................. 31 2.6.3 Comfort with Respect to Turbulence ............ 31 2.7 Current AIRBUS Practices ............................ 32 2.7.1 Validation Methods ........................... 32 2.7.2 Validation Means ............................. 34 2.7.3 Validation Coverage........................... 35 2.8 AIRBUS Expectations ................................ 36 References ................................................ 36 Part II: Generation of Linear Uncertain Models 3 Generation of LPV Models and LFRs for a Nonlinear Aircraft Model .......................................... 39 Simon Hecker, Harald Pfifer 3.1 Introduction......................................... 39 3.2 Basic Procedure for the Generation of LPV Models....... 41 3.2.1 Specification of Known Relations................ 42 3.2.2 Element-Wise Significance Check ............... 42 3.2.3 Multivariable Polynomial Fitting................ 43 3.2.4 Full Rank Basis Reduction ..................... 45 3.3 Optimisation of the Linear Parameter Varying Model ..... 46 3.3.1 Optimisation with ν-Gap Metric Constraint ...... 47 3.3.2 Optimisation of the Polynomial Coefficients ...... 47 3.4 Application to the COFLCUO Nonlinear Aircraft Model .. 48 3.4.1 The Aircraft Model ........................... 48 3.4.2 Trimming and Linearisation .................... 49 3.4.3 Generation of an LFR for the Actuator Model and the Sensor Model ......................... 51 3.4.4 Generation of LPV Models and LFRs for the Flight Dynamics Model........................ 52 3.4.5 Validation of the LPV Models and LFRs of the Flight Dynamics Model........................ 54 3.5 Conclusion .......................................... 56 References ................................................ 56 4 Generation of LFRs for a Flexible Aircraft Model ....... 59 Cl´ement Roos 4.1 Introduction......................................... 59 4.2 Problem Statement................................... 60 4.2.1 Description of the Reference Models............. 60 4.2.2 LFT Modelling Objective ...................... 61 4.2.3 Challenging Issues ............................ 62 Contents XI 4.3 Description of the Method............................. 62 4.3.1 Generation of Reduced and Consistent Models.... 63 4.3.2 PolynomialInterpolation and LFT Modelling..... 66 4.3.3 Special Case of a Coarse Grid .................. 67 4.3.4 Low Order LFR Generation Procedure .......... 68 4.4 Numerical Results.................................... 69 4.4.1 Construction of the LFR....................... 70 4.4.2 Validation on the Grid......................... 72 4.4.3 Validation on the Whole Continuous Domain ..... 72 4.4.4 Evaluation of the Low Order LFR Generation Procedure.................................... 75 4.5 Conclusion .......................................... 76 References ................................................ 77 5 Generation of LFRs for a Nonlinear Controller and Closed-Loop Aircraft Models ............................ 79 Carsten Do¨ll, Fabien Lescher, Cl´ement Roos 5.1 Introduction......................................... 79 5.2 Description of the Nonlinear Controller ................. 80 5.3 Generation of the Controller LFRs ..................... 84 5.3.1 LFRs for Parameter Varying Gains.............. 85 5.3.2 LFRs for Saturations and Rate Limiters ......... 87 5.3.3 LFRs for Nonlinear Input/Output Relations...... 89 5.3.4 LFRs for the Overall Nonlinear Controller ....... 91 5.4 Generation of the Closed-Loop LFR .................... 96 5.4.1 Closed-Loop LFRs for the Nonlinear Model Performance Analysis.......................... 96 5.4.2 Closed-Loop LFRs for the Nonlinear Model Stability Analysis ............................. 99 5.4.3 Closed-Loop LFRs for the Flexible Model Stability and Performance Analysis.............. 100 5.5 Evaluation of the LFR Generation Process .............. 101 5.5.1 Evaluation of the LFR of the Nonlinear Controller.................................... 101 5.5.2 Evaluation of the Closed-Loop LFR ............. 103 5.6 Conclusions ......................................... 107 References ................................................ 108 6 Identification of LPV State-Space Models Using H2-Minimisation......................................... 111 Daniel Petersson,Johan Lo¨fberg 6.1 Introduction......................................... 111 6.2 H2-Minimisation ..................................... 113 6.2.1 Important Property of H2-Minimisation ......... 114 6.2.2 Rewriting the H2-Norm of the Error System...... 115 6.3 Method 1: General Nonlinear Optimisation .............. 116 XII Contents 6.3.1 Evaluation of the Cost Function ................ 116 6.3.2 Evaluation of the Gradient ..................... 118 6.4 Method 2: Semidefinite Programming................... 120 6.5 Regularisationof the Optimisation Problem ............. 122 6.6 Examples ........................................... 123 6.6.1 Academic Example............................ 123 6.6.2 Application Example .......................... 126 6.7 Conclusions ......................................... 127 References ................................................ 128 Part III: Analysis Techniques and Tools 7 Enhanced μ-Analysis Techniques for Clearance .......... 131 Jean-Marc Biannic, Cl´ement Roos 7.1 Introduction......................................... 131 7.2 Problem Statement and Preliminary Results ............. 132 7.2.1 Introduction to μ-Analysis ..................... 132 7.2.2 Validity of the Scaling Matrices................. 134 7.3 Computation of a Guaranteed Robustness Margin ........ 136 7.3.1 Standard Version of the Algorithm .............. 136 7.3.2 Extension to Modal Performance Analysis........ 137 7.4 Computation of a Guaranteed Stability Domain.......... 138 7.4.1 Standard Version of the Algorithm .............. 138 7.4.2 Computation of the μ-Sensitivities .............. 140 7.4.3 Other Algorithmic Variants .................... 140 7.5 Connection with Clearance of Flight Control Laws........ 141 7.5.1 Eigenvalue Criterion........................... 141 7.5.2 Stability Margin Criterion...................... 142 7.6 Conclusion .......................................... 145 References ................................................ 146 8 Worst-Case Parameter Search Based Clearance Using Parallel Nonlinear Programming Methods ............... 149 Hans-Dieter Joos 8.1 Introduction......................................... 149 8.2 Theoretical Basis..................................... 150 8.2.1 Formulation as Global Optimisation Problem..... 150 8.2.2 Level of Confidence ........................... 151 8.2.3 Clearance Strategy............................ 151 8.2.4 Transformationof Parameter Space ............. 152 8.3 Applied Optimisation Methods......................... 153 8.4 ParallelComputation ................................. 155 8.5 Conclusions ......................................... 157 References ................................................ 158

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.