ebook img

OPTIMAL RESOURCE ALLOCATION AND CROSS-LAYER CONTROL IN COGNITIVE AND ... PDF

211 Pages·2011·2.48 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview OPTIMAL RESOURCE ALLOCATION AND CROSS-LAYER CONTROL IN COGNITIVE AND ...

OPTIMAL RESOURCE ALLOCATION AND CROSS-LAYER CONTROL IN COGNITIVE AND COOPERATIVE WIRELESS NETWORKS by Rahul Urgaonkar A Dissertation Presented to the FACULTY OF THE USC GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY (ELECTRICAL ENGINEERING) May 2011 Copyright 2011 Rahul Urgaonkar Dedication To Aai-Baba, BB, and Paulami ii Acknowledgments This work would not have been possible without the encouragement, help, and guidance that I received over the years from many individuals. First and foremost is my advisor, Prof. Michael J. Neely. I remember attending a seminar talk that he gave at USC as a new faculty member sometime in early 2004. At that time, I was a Master’s student, barely contemplating the idea of pursuing a Ph.D. I still remember the sense of awe that I felt listening to him talk about his doctoral work. I thought that if I were to ever pursue a Ph.D., this is the kind of research I would want to do. I am forever grateful to Prof. Neely for taking me as his student and patiently helping me through thick and thin, from being a role model and a guide to sharing his candid assessments of my work and providing valuable feedback. I hope I have been able to achieve at least some of what I set out to do in my work. I would like to express my sincere thanks to Prof. Bhaskar Krishnamachari who was my research advisor during my Master’s studies and who served on my committee. It was with Bhaskar that I got the first opportunity to do research in the area of Wireless Networks. Hisenthusiasmforresearch,learning,andmentoringstudentsistrulyinspiring and I feel lucky to have benefitted from that. I am also thankful to my other committee iii members: Prof. Giuseppe Caire, Prof. Leana Golubchik, Prof. Keith M. Chugg, and Prof. C.-C. Jay Kuo for their time. WorkingintheCommunicationSciencesInstitutewasmadememorablebymyfriends and colleagues Ozgun, Chih-ping, and Longbo as well as Gerrie, Anita, Mayumi, and Milly. I also thank Apoorva, my room-mate for several years, and Sumit and Anant, for their friendship. I wish everyone the best in all future endeavors of their lives. My family has been the constant force supporting me religiously in my darkest hours. I could count on them to discuss with me at any hour what now seem the most trivial of all “problems”. My parents, Narendra and Dr. Charu Urgaonkar, have been my greatest fans and this work is dedicated to them. My brother, Prof. Bhuvan Urgaonkar has been a role model and a friend whose advice has helped me in innumerable ways. I am also thankful to my Uncle and Aunt, Dr. Mohan and Shachi Gawande and my grandfather, Dr. Trimbak Gawande for providing me a home away from home. Last, but not the least of all who helped me jump “The Fence” is my best friend, my dear wife Paulami whose love for me knows no bounds. The best thing that ever happened to me was meeting with her. Thank you Paulami, for making every day with you an adventure! Rahul Urgaonkar March 2011 iv Table of Contents Dedication ii Acknowledgments iii List of Figures viii Abstract x Chapter 1: Introduction 1 1.1 Models for Cognitive Radio Networks . . . . . . . . . . . . . . . . . . . . 3 1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2: Reliable Scheduling in Cognitive Radio Networks 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Mobility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Interference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.3 Primary User Traffic Model . . . . . . . . . . . . . . . . . . . . . . 16 2.2.4 Channel State Information Model . . . . . . . . . . . . . . . . . . 17 2.2.5 Queueing Dynamics and Control Decisions . . . . . . . . . . . . . 20 2.2.6 Discussion of Network Model . . . . . . . . . . . . . . . . . . . . . 21 2.3 Maximum Throughput Objective . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Optimal Control Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 Cognitive Network Control Algorithm (CNC) . . . . . . . . . . . . 25 2.4.2 Comparison with a Counter Based Algorithm . . . . . . . . . . . . 28 2.4.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5 Stochastic Lyapunov Optimization . . . . . . . . . . . . . . . . . . . . . . 35 2.5.1 Lyapunov Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5.2 Optimal Stationary, Randomized Policy . . . . . . . . . . . . . . . 39 2.6 Distributed Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 v Chapter 3: Delay-Limited Cooperative Communication 49 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Basic Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.1 Example of Channel State Information Models . . . . . . . . . . . 57 3.2.2 Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.3 Discussion of Basic Model . . . . . . . . . . . . . . . . . . . . . . . 61 3.3 Control Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4 Optimal Control Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.5 Known Channels, Unknown Statistics . . . . . . . . . . . . . . . . . . . . 70 3.5.1 Regenerative DF, Orthogonal Channels . . . . . . . . . . . . . . . 72 3.5.2 Non-Regenerative DF, Orthogonal Channels . . . . . . . . . . . . . 75 3.5.3 AF, Orthogonal Channels . . . . . . . . . . . . . . . . . . . . . . . 76 3.5.4 DF with DSTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.5.5 AF with DSTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.6 Unknown Channels, Known Statistics . . . . . . . . . . . . . . . . . . . . 81 3.6.1 Simulation Based Method . . . . . . . . . . . . . . . . . . . . . . . 82 3.7 Multi-Source Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.8 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Chapter 4: Opportunistic Cooperation in Cognitive Networks 91 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.2 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.1 Control Decisions and Queueing Dynamics . . . . . . . . . . . . . 99 4.2.2 Control Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.3 Solution Using The “Drift-plus-Penalty” Ratio Method . . . . . . . . . . . 104 4.4 The Maximizing Policy of (4.16) . . . . . . . . . . . . . . . . . . . . . . . 107 4.4.1 Proof Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.6 Extensions to Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.6.1 Multiple Secondary Users . . . . . . . . . . . . . . . . . . . . . . . 120 4.6.2 Fading Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 4.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Chapter 5: Optimal Routing with Mutual Information Accumulation 134 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3 Minimum Delay Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.3.1 Timeslot and Transmission Structure . . . . . . . . . . . . . . . . . 141 5.3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3.3 Characterizing the Optimal Solution of (5.1) . . . . . . . . . . . . 145 5.3.4 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.3.5 Exact Solution for a Line Network . . . . . . . . . . . . . . . . . . 154 5.4 Minimum Energy Routing with Delay Constraint . . . . . . . . . . . . . . 156 vi 5.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.4.2 Characterizing the Optimal Solution of (5.9) . . . . . . . . . . . . 158 5.4.3 A Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.5 Minimum Delay Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.5.1 Timeslot and Transmission Structure . . . . . . . . . . . . . . . . . 162 5.5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.5.3 Characterizing the Optimal Solution of (5.10) . . . . . . . . . . . . 164 5.5.4 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.5.5 A Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 168 5.6 Distributed Heuristics and Simulations . . . . . . . . . . . . . . . . . . . . 169 5.6.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Chapter 6: Conclusions 175 Bibliography 178 Appendix A Appendices for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 A.1 Lyapunov Drift under policy STAT . . . . . . . . . . . . . . . . . . . . . . 186 A.2 Convergence of Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . 188 A.3 On Greedy Maximal Weight Matchings . . . . . . . . . . . . . . . . . . . 188 Appendix B Appendices for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 B.1 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 B.2 Solution to (3.17) using KKT conditions . . . . . . . . . . . . . . . . . . . 191 B.3 Solution to (3.21) using KKT conditions . . . . . . . . . . . . . . . . . . . 192 Appendix C Appendices for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 C.1 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 C.2 Proof of Theorem 5, parts (2) and (3) . . . . . . . . . . . . . . . . . . . . 195 C.3 Computing D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Appendix D Appendices for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 D.1 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 D.2 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 D.3 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 vii List of Figures 2.1 Example cognitive network showing primary and secondary users . . . . . 13 2.2 Two state Markov Chain example for primary user channel occupancy process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Total average congestion vs. input rate under the Counter Based Algo- rithm and CNC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4 Example cell-partitioned network used in simulation . . . . . . . . . . . . 45 2.5 Total average congestion vs. input rate for different values of V . . . . . . 48 2.6 Achieved throughput vs. input rate for different values of V . . . . . . . . 48 3.1 Example 2-hop network with source, destination and relays. The time slot structures for different transmission strategies are also shown. Due to the half-duplex constraint, cooperative protocols need to operate in two phases. 51 3.2 A snapshot of the example network used in simulation. . . . . . . . . . . . 87 3.3 Average Sum Power vs. V. . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.4 Average Reliability Queue Occupancy vs. V. . . . . . . . . . . . . . . . . 89 4.1 Example femtocell network with primary and secondary users. . . . . . . 96 4.2 Frame-based structure of the problem under consideration. Each frame consists of two periods: PU Idle and PU Busy. . . . . . . . . . . . . . . . 97 4.3 Birth-Death Markov Chain over the system state where the system state represents the primary user queue backlog. . . . . . . . . . . . . . . . . . 110 4.4 Average Secondary User Throughput vs. V. . . . . . . . . . . . . . . . . . 130 viii 4.5 Average Secondary User Queue Occupancy vs. V. . . . . . . . . . . . . . 131 4.6 Moving Average of Secondary User Throughput over Frames. . . . . . . . 133 4.7 Moving Average of Power used by the Secondary User for Cooperative Transmissions over Frames. . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.1 Example network with source, destination and 4 relay nodes. When a node transmits, every other node that has not yet decoded the packet accumulates mutual information at a rate given by the capacity of the link between the transmitter and that node. . . . . . . . . . . . . . . . . . . . 140 5.2 Example timeslot and transmission structure. In each stage, nodes that have already decoded the full packet transmit on orthogonal channels in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3 Optimal timeslot and transmission structure. In each stage, only the node that decodes the packet at the beginning of that stage transmits. . . . . . 145 5.4 A line network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.5 Optimaltimeslotandtransmissionstructureforminimumdelaybroadcast. In each stage, at most one node from the set of nodes that have the full packet transmits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.6 A25nodenetworkwheretheroutesfortraditionalminimumdelay,Heuris- tics 1 and 2, and optimal mutual information accumulation are shown. . . 171 5.7 The CDF of the ratio of the minimum delay under the two heuristics and the traditional shortest path to the minimum delay under the optimal mutual information accumulation solution. . . . . . . . . . . . . . . . . . . 172 D.1 The 4 node example network used in Appendix D.3. . . . . . . . . . . . . 200 ix Abstract We investigate four problems on optimal resource allocation and cross-layer control in cognitive and cooperative wireless networks with time-varying channels. The first three problems consider different models and capabilities associated with cognition and coop- eration in such networks. Specifically, the first problem focuses on the dynamic spectrum access model for cognitive radio networks and assumes no cooperation between the li- censed (or “primary”) and unlicensed (or “secondary”) users. Here, the secondary users try to avoid interfering with the primary users while seeking transmission opportunities on vacant primary channels in frequency, time, or space. The second problem considers a relay-based fully cooperative wireless network. Here, cooperative communication tech- niques at the physical layer are used to improve the reliability and energy cost of data transmissions. The third problem considers a cooperative cognitive radio network where the secondary users can cooperatively transmit with the primary users to improve the latter’s effective transmission rate. In return, the secondary users get more opportunities for transmitting their own data when the primary users are idle. Inallofthesescenarios,ourgoalistodesignoptimalcontrolalgorithmsthatmaximize time-average network utilities (such as throughput) subject to time-average constraints (such as power, reliability, etc.). To this end, we make use of the technique of Lyapunov x

Description:
Chapter 2: Reliable Scheduling in Cognitive Radio Networks. 9 .. In this thesis, we study several such resource allocation problems in the area of cog-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.