Optics, Light, and Lasers ThePracticalApproachtoModernAspectsofPhotonicsand LaserPhysics DieterMeschede Author AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, DieterMeschede editors,andpublisherdonotwarrantthe InstitutfürAngewandtePhysik informationcontainedinthesebooks, WegelerStraße8 includingthisbook,tobefreeoferrors. 53115Bonn Readersareadvisedtokeepinmindthat statements,data,illustrations,procedural Cover detailsorotheritemsmayinadvertentlybe Thefrontcoverimagewaskindlyprovided inaccurate. bytheauthor. LibraryofCongressCardNo.:appliedfor BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailablefromthe BritishLibrary. BibliographicinformationpublishedbytheDeutsche Nationalbibliothek TheDeutscheNationalbibliothekliststhispublication intheDeutscheNationalbibliografie;detailed bibliographicdataareavailableontheInternetat <http://dnb.d-nb.de>. ©2017Wiley-VCHVerlagGmbH&Co.KGaA, Boschstr.12,69469Weinheim,Germany Allrightsreserved(includingthoseoftranslationinto otherlanguages).Nopartofthisbookmaybe reproducedinanyform–byphotoprinting,microfilm, oranyothermeans–nortransmittedortranslated intoamachinelanguagewithoutwrittenpermission fromthepublishers.Registerednames,trademarks, etc.usedinthisbook,evenwhennotspecifically markedassuch,arenottobeconsideredunprotected bylaw. PrintISBN:978-3-527-41331-7 ePDFISBN:978-3-527-68551-6 ePubISBN:978-3-527-68549-3 MobiISBN:978-3-527-68550-9 oBookISBN:978-3-527-68548-6 CoverDesign SchulzGrafik-Design,Fußgönheim, Germany Typesetting SPiGlobal,Chennai,India PrintingandBinding Printedonacid-freepaper v Contents Preface xix 1 LightRays 1 1.1 LightRaysinHumanExperience 1 1.2 RayOptics 2 1.3 Reflection 2 1.3.1 PlanarMirrors 2 1.4 Refraction 3 1.4.1 LawofRefraction 3 1.4.2 TotalInternalReflection 4 1.5 Fermat’sPrinciple:TheOpticalPathLength 5 1.5.1 InhomogeneousRefractiveIndex 6 1.6 Prisms 8 1.6.1 Dispersion 9 1.7 LightRaysinWaveGuides 10 1.7.1 RayOpticsinWaveGuides 11 1.7.2 Step-IndexFibers 12 1.7.2.1 NumericalApertureofanOpticalFiber 13 1.7.2.2 PropagationVelocity 13 1.7.3 Gradient-IndexFibers 13 1.8 LensesandCurvedMirrors 15 1.8.1 Lenses 15 1.8.2 ConcaveMirrors 16 1.9 MatrixOptics 17 1.9.1 ParaxialApproximation 17 1.9.2 ABCDMatrices 18 1.9.3 LensesinAir 19 1.9.4 LensSystems 21 1.9.5 PeriodicLensSystems 22 1.9.6 ABCDMatricesforWaveGuides 23 1.10 RayOpticsandParticleOptics 23 Problems 25 vi Contents 2 WaveOptics 29 2.1 ElectromagneticRadiationFields 29 2.1.1 StaticFields 30 2.1.2 PolarizableandMagnetizableMedia 30 2.1.3 DynamicFields 31 2.1.4 FourierComponents 32 2.1.5 Maxwell’sEquationsforOptics 33 2.1.6 ContinuityEquationandSuperpositionPrinciple 33 2.1.7 TheWaveEquation 33 2.1.8 EnergyDensity,Intensity,andthePoyntingVectorof ElectromagneticWaves 35 2.2 WaveTypes 37 2.2.1 PlanarWaves 37 2.2.2 SphericalWaves 38 2.2.3 DipoleWaves 39 2.3 GaussianBeams 40 2.3.1 TheGaussianPrincipalModeorTEM Mode 41 00 2.3.1.1 RayleighZone,ConfocalParameterb 42 2.3.1.2 RadiusofWaveFrontsR(z) 42 2.3.1.3 BeamWaist2𝑤 42 0 2.3.1.4 BeamRadius𝑤(z) 43 2.3.1.5 DivergenceΘ 43 div 2.3.1.6 GouyPhase𝜂(z) 43 2.3.2 TheABCDRuleforGaussianModes 44 2.3.3 ParaxialWaveEquation 46 2.3.4 HigherGaussianModes 47 2.3.5 CreationofGaussianModes 49 2.3.6 MoreGaussianParaxialBeams 50 2.4 VectorLight:Polarization 50 2.4.1 JonesVectors 52 2.4.2 StokesParameters 52 2.4.3 PolarizationStateandPoincaréSphere 53 2.4.4 JonesMatrices,PolarizationControl,andMeasurement 54 2.4.5 PolarizationandProjection 56 2.4.6 PolarizationofLightBeamswithFiniteExtension 57 2.5 Optomechanics:MechanicalActionofLightBeams 58 2.5.1 RadiationPressure 58 2.5.2 AngularMomentumofLightBeams 59 2.5.3 Beth’sExperiment 60 2.5.4 OpticalAngularMomentum(OAM) 60 2.5.4.1 TwistedBeams 61 2.5.4.2 Laguerre–GaussianModes 61 2.5.4.3 TransformingHermite–GaussiantoLaguerre–GaussianBeams 62 2.6 Diffraction 63 2.6.1 ScalarDiffractionTheory 64 2.7 FraunhoferDiffraction 67 2.7.1 OpticalFourierTransformation,FourierOptics 70 Contents vii 2.8 FresnelDiffraction 71 2.8.1 Babinet’sPrinciple 74 2.8.2 FresnelZonesandFresnelLenses 75 2.9 BeyondGaussianBeams:DiffractionIntegraland ABCDFormalism 77 Problems 77 3 LightPropagationinMatter:Interfaces,Dispersion,and Birefringence 83 3.1 DielectricInterfaces 83 3.1.1 RefractionandReflectionatGlassSurfaces 84 3.1.1.1 sPolarization 84 3.1.1.2 pPolarization 86 3.1.2 TotalInternalReflection(TIR) 87 3.1.3 ComplexRefractiveIndex 88 3.2 InterfacesofConductingMaterials 89 3.2.1 WavePropagationinConductingMaterials 90 3.2.1.1 HighFrequencies:𝜔 𝜏 ≫𝜔𝜏 ≫1 90 p 3.2.1.2 LowFrequencies:𝜔𝜏 ≪1≪𝜔 𝜏 90 p 3.2.2 MetallicReflection 91 3.2.3 PolaritonsandPlasmons 92 3.2.3.1 SurfacePlasmonPolaritons(SPPs) 92 3.2.3.2 PropertiesofSurfacePlasmonPolaritons(SPPs) 93 3.3 LightPulsesinDispersiveMaterials 94 3.3.1 PulseDistortionbyDispersion 98 3.3.2 Solitons 101 3.4 AnisotropicOpticalMaterials 103 3.4.1 Birefringence 103 3.4.2 OrdinaryandExtraordinaryLightRays 106 3.4.3 ConstructionofRetarderPlates 107 3.4.3.1 LyotFilter 108 3.4.4 BirefringentPolarizers 109 3.5 OpticalModulators 110 3.5.1 PockelsCellandElectro-opticalModulators 110 3.5.2 LiquidCrystalModulators 112 3.5.3 SpatialLightModulators 113 3.5.4 Acousto-OpticalModulators 114 3.5.5 FaradayRotators 117 3.5.6 OpticalIsolatorsandDiodes 118 Problems 119 4 LightPropagationinStructuredMatter 121 4.1 OpticalWaveGuidesandFibers 122 4.1.1 Step-IndexFibers 123 4.1.1.1 WeaklyGuidingStepFibers 125 4.1.1.2 𝓁 =0:TEandTMModes 127 4.1.1.3 𝓁 ≥1:HEandEHModes 128 viii Contents 4.1.1.4 𝓁 ≥1:LPModes 128 4.1.2 Graded-IndexFiber 129 4.1.3 FiberAbsorption 130 4.1.4 FunctionalTypesandApplicationsofOpticalFibers 130 4.1.4.1 MultimodeFibers 130 4.1.4.2 Single-ModeFibers 131 4.1.4.3 Polarization-Maintaining(PM)Fibers 131 4.1.4.4 PhotonicCrystalFibers(PCF) 132 4.2 DielectricPhotonicMaterials 132 4.2.1 PhotonicCrystals 132 4.2.1.1 LightPropagationin1DPeriodicallyStructuredDielectrics 133 4.2.2 BlochWaves 134 4.2.3 PhotonicBandgapin1D 135 4.2.4 Bandgapsin2Dand3D 137 4.2.4.1 2DPhotonicCrystals 137 4.2.4.2 3DPhotonicCrystals 139 4.2.5 DefectsandDefectModes 139 4.2.6 PhotonicCrystalFibers(PCFs) 141 4.3 Metamaterials 143 4.3.1 Dielectric(Plasmonic)Metamaterials 143 4.3.2 MagneticMetamaterialsandnegativeindexofrefraction 144 4.3.3 ConstructingMagneticMetamaterials 145 4.3.4 ApplicationsofMetamaterials:ThePerfectLens 146 Problems 147 5 OpticalImages 149 5.1 SimpleLenses 149 5.2 TheHumanEye 151 5.3 MagnifyingGlassandEyepiece 152 5.4 Microscopes 154 5.4.1 ResolvingPowerofMicroscopes 155 5.4.1.1 RayleighCriterionandNumericalAperture 155 5.4.1.2 Abbe’sTheoryofResolution 156 5.4.1.3 ExploitingtheAbbe–RayleighResolutionLimit 157 5.4.2 AnalyzingandImprovingContrast 159 5.4.2.1 TheModulationTransferFunction(MTF) 159 5.4.2.2 EnhancingContrast 160 5.5 ScanningMicroscopyMethods 161 5.5.1 DepthofFocusandConfocalMicroscopy 161 5.5.2 ScanningNear-FieldOpticalMicroscopy(SNOM) 162 5.5.3 OvercomingtheRayleigh–AbbeResolutionLimitswithLight 163 5.5.3.1 Single-MoleculeDetection 164 5.5.3.2 PALMMicroscopy 165 5.5.3.3 STEDMicroscopy 165 5.6 Telescopes 166 5.6.1 TheoreticalResolvingPowerofaTelescope 166 5.6.2 MagnificationofaTelescope 167 Contents ix 5.6.3 ImageDistortionsofTelescopes 168 5.6.3.1 LensTelescopesandReflectorTelescopes 168 5.6.3.2 AtmosphericTurbulence 169 5.7 Lenses:DesignsandAberrations 169 5.7.1 TypesofLenses 170 5.7.1.1 PlanarConvexLenses 170 5.7.1.2 BiconvexLensesandDoublets 171 5.7.1.3 MeniscusLenses 171 5.7.2 Aberrations:SeidelAberrations 172 5.7.2.1 RayPropagationinFirstOrder 172 5.7.2.2 RayPropagationinThirdOrder 172 5.7.2.3 ApertureAberrationorSphericalAberration 173 5.7.2.4 Astigmatism 174 5.7.2.5 ComaandDistortion 175 5.7.3 ChromaticAberration 176 Problems 177 6 CoherenceandInterferometry 181 6.1 Young’sDoubleSlit 181 6.2 CoherenceandCorrelation 182 6.2.1 CorrelationFunctions 183 6.2.2 BeamSplitter 184 6.3 TheDouble-SlitExperiment 185 6.3.1 TransverseCoherence 186 6.3.2 OpticalorDiffractionGratings 188 6.3.3 Monochromators 190 6.4 Michelsoninterferometer:longitudinalcoherence 191 6.4.1 LongitudinalorTemporalCoherence 192 6.4.2 Mach–ZehnderandSagnacInterferometers 195 6.4.2.1 Mach–ZehnderInterferometer 195 6.4.2.2 SagnacInterferometer 196 6.5 Fabry–PérotInterferometer 197 6.5.1 FreeSpectralRange,Finesse,andResolution 200 6.6 OpticalCavities 202 6.6.1 DampingofOpticalCavities 202 6.6.2 ModesandModeMatching 203 6.6.3 ResonanceFrequenciesofOpticalCavities 204 6.6.4 SymmetricOpticalCavities 205 6.6.5 OpticalCavities:ImportantSpecialCases 205 6.6.5.1 PlaneParallelCavity:𝓁∕R=0 205 6.6.5.2 ConfocalCavity:𝓁∕R=1 206 6.6.5.3 ConcentricCavity:𝓁∕R=2 207 6.7 ThinOpticalFilms 208 6.7.1 Single-LayerFilms 208 6.7.1.1 MinimalReflection:ARCoating,ARLayer,and𝜆∕4Film 209 6.7.1.2 Reflection:HighlyReflectiveFilms 209 6.7.2 MultilayerFilms 209 x Contents 6.8 Holography 210 6.8.1 HolographicRecording 211 6.8.2 HolographicReconstruction 212 6.8.2.1 ZerothOrder 213 6.8.2.2 Halo 213 6.8.2.3 ReconstructedSignalWave 213 6.8.2.4 ConjugatedWave 213 6.8.3 Properties 214 6.8.3.1 Three-DimensionalReconstruction 214 6.8.3.2 PartialReconstruction 214 6.8.3.3 Magnification 214 6.9 LaserSpeckle(LaserGranulation) 214 6.9.1 RealandVirtualSpecklePatterns 215 6.9.2 SpeckleGrainSizes 215 Problems 216 7 LightandMatter 219 7.1 ClassicalRadiationInteraction 220 7.1.1 LorentzOscillators 220 7.1.2 MacroscopicPolarization 224 7.1.2.1 LinearPolarizationandMacroscopicRefractiveIndex 225 7.1.2.2 AbsorptionandDispersioninOpticallyThinMedia 226 7.1.2.3 DenseDielectricMediaandNearFields 227 7.2 Two-LevelAtoms 229 7.2.1 AreThereAnyAtomswithOnlyTwoLevels? 229 7.2.2 DipoleInteraction 230 7.2.3 OpticalBlochEquations 232 7.2.4 Pseudo-spin,Precession,andRabiNutation 234 7.2.5 MicroscopicDipolesandEnsembles 235 7.2.6 OpticalBlochEquationswithDamping 235 7.2.7 Steady-StateInversionandPolarization 236 7.2.7.1 Steady-StateInversionandSaturationIntensity 236 7.2.7.2 Steady-StatePolarization 238 7.3 StimulatedandSpontaneousRadiationProcesses 239 7.3.1 StimulatedEmissionandAbsorption 241 7.3.2 SpontaneousEmission 242 7.4 InversionandAmplification 242 7.4.1 Four-,Three-,andTwo-LevelLaserSystems 243 7.4.2 GenerationofInversion 243 7.4.3 OpticalGain 244 7.4.4 TheHistoricalPathtotheLaser 245 Problems 246 8 TheLaser 249 8.1 TheClassicSystem:TheHe–NeLaser 251 8.1.1 Construction 251 8.1.1.1 Amplifier 251 Contents xi 8.1.1.2 OperatingConditions 252 8.1.1.3 TheLaserResonator 253 8.1.2 ModeSelectionintheHe–NeLaser 254 8.1.2.1 LaserLineSelection 254 8.1.3 GainProfile,LaserFrequency,andSpectralHoles 255 8.1.4 TheSingle-FrequencyLaser 256 8.1.5 LaserPower 257 8.1.6 SpectralPropertiesoftheHe–NeLaser 258 8.1.6.1 LaserLinewidth 258 8.1.7 OpticalSpectralAnalysis 259 8.1.7.1 TheFabry–PérotSpectrumAnalyzer 259 8.1.7.2 TheHeterodyneMethod 259 8.1.8 ApplicationsoftheHe–NeLaser 261 8.2 OtherGasLasers 261 8.2.1 TheArgonLaser 261 8.2.1.1 TheAmplifier 262 8.2.1.2 OperatingConditions 262 8.2.1.3 FeaturesandApplications 263 8.2.2 Metal-VaporLasers 263 8.2.3 MolecularGasLasers 264 8.2.3.1 TheCO Laser 265 2 8.2.3.2 Gain 265 8.2.3.3 OperatingConditions 267 8.2.3.4 TheExcimerLaser 267 8.3 TheWorkhorses:Solid-StateLasers 268 8.3.1 OpticalPropertiesofLaserCrystals 268 8.3.2 Rare-EarthIons 269 8.4 SelectedSolid-StateLasers 271 8.4.1 TheNeodymiumLaser 271 8.4.1.1 TheNeodymiumAmplifier 271 8.4.1.2 ConfigurationandOperation 272 8.4.2 ApplicationsofNeodymiumLasers 273 8.4.2.1 Frequency-DoubledNeodymiumLasers 273 8.4.2.2 TheMonolithicallyIntegratedLaser(Miser) 274 8.4.3 ErbiumLasers,Erbium-DopedFiberAmplifiers(EDFAs) 275 8.4.4 FiberLasers 276 8.4.4.1 CladdingPumping 276 8.4.4.2 FiberBraggGratings 277 8.4.5 YtterbiumLasers:HigherPowerwithThin-Discand FiberLasers 278 8.5 TunableLaserswithVibronicStates 279 8.5.1 Transition-MetalIons 279 8.5.2 ColorCenters 280 8.5.3 Dyes 281 8.6 TunableRingLasers 281 Problems 283 xii Contents 9 LaserDynamics 285 9.1 BasicLaserTheory 285 9.1.1 TheResonatorField 285 9.1.2 DampingoftheResonatorField 286 9.1.3 Steady-StateLaserOperation 288 9.1.3.1 SaturatedGain 289 9.1.3.2 ModePulling 289 9.1.3.3 FieldStrengthandNumberofPhotonsintheResonator 290 9.1.3.4 LaserThreshold 290 9.1.3.5 LaserPowerandOutcoupling 291 9.2 LaserRateEquations 291 9.2.1 LaserSpikingandRelaxationOscillations 292 9.3 Threshold-LessLasersandMicro-lasers 295 9.4 LaserNoise 298 9.4.1 AmplitudeandPhaseNoise 298 9.4.1.1 AmplitudeFluctuations 298 9.4.1.2 PhaseFluctuations 299 9.4.2 TheMicroscopicOriginofLaserNoise 301 9.4.3 LaserIntensityNoise 302 9.4.3.1 QuantumLimitoftheLaserAmplitude 302 9.4.3.2 RelativeIntensityNoise(RIN) 303 9.4.4 Schawlow–TownesLinewidth 304 9.5 PulsedLasers 305 9.5.1 “Q-Switch” 305 9.5.1.1 TechnicalQ-Switches 306 9.5.1.2 CavityDumping 306 9.5.2 ModeLocking 306 9.5.3 MethodsofModeLocking 309 9.5.4 MeasurementofShortPulses 312 9.5.5 Tera-andPetawattLasers 312 9.5.6 CoherentWhiteLight 313 9.5.7 FrequencyCombs 315 Problems 316 10 SemiconductorLasers 319 10.1 Semiconductors 319 10.1.1 ElectronsandHoles 319 10.1.2 DopedSemiconductors 320 10.1.3 pnJunctions 321 10.2 OpticalPropertiesofSemiconductors 322 10.2.1 SemiconductorsforOptoelectronics 322 10.2.2 AbsorptionandEmissionofLight 323 10.2.3 InversionintheLaserDiode 325 10.2.4 SmallSignalGain 327 10.2.5 Homo-andHeterostructures 329 10.3 TheHeterostructureLaser 330 10.3.1 ConstructionandOperation 330
Description: