ebook img

Operads, quasiorders, and regular languages PDF

0.24 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Operads, quasiorders, and regular languages

Operads, quasiorders and regular languages S. Giraudo ∗ J.-G. Luque† L. Mignot ‡ F. Nicart§ 4 1 0 2 Abstract n Wegeneralizetheconstructionofmultitildesintheaimtoprovidemultitildeoperatorsforregular a languages. Weshowthattheunderliyingalgebraicstructureinvolvestheactionofsomeoperads. J An operad is an algebraic structure that mimics the composition of the functions. The involved 9 operads are described in terms of combinatorial objects. These operads are obtained from more primitive objects, namely precompositions, whose algebraic counter-parts are investigated. One ] of these operads acts faithfully on languages in the sense that two different operators act in two L differentways. F . s c 1 Introduction [ 1 FollowingtheChomsky-Schützenbergerhierarchy[5],regularlanguagesaredefinedtobetheformal v languagesthataregeneratedbyType-3grammars(alsocalledregulargrammars). Theseparticular 0 languageshavebeenstudiedfromseveralyearssincetheyhavemanyapplicationstopatternmach- 1 ing,compilation,verification,bioinformatics,etc. Theirgeneralizationasrationalserieslinksthem 0 tovariousalgebraicorcombinatorialtopics: enumeration(manipulationsofgeneratingfunctions), 2 rationalapproximation(forinstance Pade approximation),representationtheory(moduleviewed 1. asautomaton),combinatorialoptimization((max,+)-automata),etc. 0 Oneoftheirmaininterestisthattheycanberepresentedbyvarioustools: regulargrammars,au- 4 tomata,regularexpressions,etc. Whilstregularlanguagescanberepresentedbybothautomataand 1 regularexpressions[8],thesetoolsarenotequivalent. Indeed,EhrenfeuchtandZeiger[6]showed v: a one parameter family of automata whose shortest equivalent regular expressionshave a width i exponentiallygrowingwiththenumbersofstates. Notethat,itispossibletocomputeanautomaton X fromaregularexpressionEsuchthat the number ofits states isalinear functionof the alphabet r width(i.e. thenumberofoccurrencesofalphabetsymbols)ofE[1,4,7,13]. a Intheaimtoincreaseexpressivenessofexpressionsforaboundedlength,Caronetal.[3]introduced the so-called multi-tilde operators and applied it to representfinite languages. Investigating the equivalenceoftwomulti-tildeexpressions,theydefineanaturalnotionofcompositionwhichen- dowsthesetofmulti-tildeoperatorswithastructureofoperad.Thisstructurehasbeeninvestigated in[10]. Originatingfromthealgebraictopology[2,12],operadtheoryhasbeendevelopedasafieldof abstractalgebraconcernedbyprototypicalalgebrasthatmodelclassicalpropertiessuchascommu- tativityandassociativity[9]. Generallydefinedintermsofcategories,thisnotioncanbenaturally appliedtocomputerscience. Indeed,anoperadisjustasetofoperations,eachonehavingexactly one outputand afixedfinite number of inputs, endowedwith the compositionoperation. So an operadcanmodelthe compositionsoffunctions occurringduringtheexecutionofaprogram. In ∗[email protected];IGMLABINFOUMR8049,Laboratoired’informatiqueGaspardMonge,UniversitéParis- Est,CitéDescartes,BâtCopernic5,bdDescartesChampssurMarne77454Marne-la-ValléeCedex2FRANCE. †[email protected];LaboratoireLITIS-EA4108UniversitédeRouen. Avenuedel’Université-BP876801 Saint-Étienne-du-RouvrayCedex ‡[email protected]; LaboratoireLITIS-EA4108UniversitédeRouen. Avenuedel’Université-BP876801 Saint-Étienne-du-RouvrayCedex §fl[email protected]; Laboratoire LITIS - EA 4108 Université de Rouen. Avenue de l’Université - BP 8 76801 Saint-Étienne-du-RouvrayCedex 1 termsof theoreticalcomputerscience, this canbe representedbytreeswith branching rules. The wholepointoftheoperadsinthecontextofthecomputerscienceisthatthisallowstousedifferent toolsandconceptsfromalgebra(forinstance: morphisms,quotients,modulesetc.). Intheaimtoillustratethispointofview,letusrecallthemainresultsofourpreviouspaper[10]. Inthispaper,wefirstshowedthatthesetofmulti-tildeoperatorshasastructureofoperad.Weused theconceptofmorphismintheaimtochoosetheoperadallowingustodescribeinthesimplestway agivenoperationoraproperty.Forinstance,theoriginaldefinitionoftheactionofthemulti-tildes onlanguagesisrathercomplicated. But,viaanintermediateoperadbasedonsetofbooleanvectors, theactionwasdescribedinamorenaturalway. Inthesameway,theequivalenceproblemisclearer whenaskedinaoperadbasedonantisymmetricandreflexiverelationswhichisisomorphictothe operad of multi-tildes: two operators are equivalent if and only if they have the same transitive closure.Thetransitiveclosurebeingcompatiblewiththecomposition,wedefinedanoperadbased onpartialorderedsetsasaquotientofthepreviousoperadandweshowedthatthisrepresentation isoptimalinthesensethattwodifferentoperatorsactintwodifferentwaysonlanguages. Thisnot onlyhelpstoclarifyconstructionsbutalsotoasknewquestions. Forinstance,howmanydifferent ways do k-ary multi-tildes act on languages? Precisely, the answer is the number of posets on {1,...,k+1}thatarecompatiblewiththenaturalorderonintegers. The aim of this paper is to generalize the construction to regular languages. We investigate several operads (based on double multi-tildes, antireflexive relations or quasiorders)allowing to representaregularlanguageasak-aryoperatorOactingonak-upletofsymbols(α ,...,α )where 1 k the α aresymbolsor∅. The operatorsgeneralizethe multi-tildesand the investigatedproperties i involvetheoperads. Thepaperisorganizedasfollows. FirstwerecallinSection2severalnotionsconcerningoperad theoryandmulti-tildeoperations.InSection3,weremarkthatmanyoftheoperadsinvolvedin[10] andinthispaperhavesomecommonproperties. Moreprecisely,theycanbedescribedcompletely bymeansof“shifting”operations. Thisleadstothedefinitionofthecategoryofprecompositions together with a functor to the category of operads. Also we define and investigate the notion of quotientofprecompositions.Thesestructuresserveasmodelfortheoperadsdefinedinthesequel. Intheaimtoillustratehowtousethesetools,werevisit,inSection4,theoperadsdefinedin[10]and describethemintermsofprecompositions. InSection5,wedefinethedoublemulti-tildeoperad DT asthegradedtensorsquareofthemulti-tildeoperad. Weconstructalsoanisomorphicoperad ARefbasedonantireflexiverelationsandaquotientbasedonquasiordersQOSet. InSection6,we describetheactionoftheoperadsonthelanguages.Inparticular,weshowthatanyregularlanguage canbewrittenasO (α ,...,α )wheretheα arelettersor∅andO isak-aryoperationbelongingto k 1 k i k ARef,DT orQOSet. Finally,weprovethattheactionofQOSetonregularlanguagesisfaithful,that istwodifferentoperatorsactintwodifferentways. 2 Some Combinatorial Operators in Language Theory Werecallheresomebasicnotionsaboutthetheoryofoperadsandsetournotationsforthesequel ofthepaper. Inparticular,werecallwhatareoperads,freeoperads,andmodulesoveranoperad. Weconcludethissectionbypresentingtheoperadofmulti-tildesintroducedin[10]. 2.1 Whatis anoperad? Operadsarealgebraicgradedstructureswhich mimicthe compositionof n-aryoperators. Letus recallthemaindefinitionsandproperties. LetP = n∈N\{0}Pn beagradedset( meansthatthe setsaredisjoint);theelementsofPnarecalledn-aryoFperators.ThesetPisendowFedwithfunctions (calledcompositions) ◦:Pn×Pk1×···×Pkn →Pk1+···+kn. Thepair(P,◦)isanoperadifthecompositionssatisfy: 1. Associativity: p◦(p ◦(p ,...,p ),...,p ◦(p ,...,p ))=(p◦(p ,...,p ))◦(p ,...,p ,...,p ,...,p ). 1 1,1 1,k1 n n,1 n,kn 1 n 1,1 1,k1 n,1 n,kn 2 2. Identity: Thereexistsaspecialelement1∈P suchthat 1 p◦(1,...,1)=1◦p=p. Forconvenience,manyauthorsuseanalternativedefinitionofoperadsinvolvingpartialcomposi- tions. Apartialcomposition◦ isamap(seee.g.[9]) i ◦i :Pm×Pn →Pm+n−1, definedby ×i−1 × m− i p ◦ p :=p ◦(1,...,1,p ,1,...,1) 1 i 2 1 2 z}|{ z}|{ for1≤i≤n. Letp ∈P ,p ∈P andp ∈P . Whencestatedintermsofpartialcompositions,theassociativity 1 m 2 n 3 q conditionsplitsintotworules: 1. Associativity1: If1≤ j<i≤nthen (p1◦ip2)◦jp3=(p1◦jp3)◦i+q−1p2. 2. Associativity2: If j≤nthen p1◦i(p2◦jp3)=(p1◦ip2)◦i+j−1p3. Notethatthecompositionsarerecoveredfromthepartialcompositionsbytheformula: p◦(p ,...,p )=(...(p◦ p )◦ p )◦ ...p )◦ p . 1 n n n n−1 n−1 2 2 1 1 Thereaderscouldreferto[9,11]foramorecompletedescriptionofthestructures. Consider two operads (P,◦) and (P′,◦′). A morphism is a graded map φ : P → P′ satisfying φ(p ◦ p ) = φ(p )◦′ φ(p ) for each p ∈ P , p ∈ P and 1 ≤ i ≤ m. Let (P,◦) be an operad, 1 i 2 1 i 2 1 m 2 n P′= P′ beagradedset.SupposethatP′isendowedwithbinaryoperators◦′:P′ ×P′ →P′ n n i m n n+m−1 andthSereexistsasurjectivegradedmapη : P → P′ satisfyingη(p1◦ip2) = η(p1)◦′i η(p2). Theset P′isautomaticallyendowedwithastructureofoperad(P′,◦′). Indeed,itsufficestoshowthatthe associativityrulesaresatisfied:Letp′ ∈P′,p′ ∈P′andp′ ∈P′. Sincetheηissurjective,thereexist 1 m 2 n 3 q p ∈P ,p ∈P ,p ∈P suchthatη(p)=p′fori=1...3. Hence, 1 m 2 n 3 q i i p′ ◦′(p′ ◦′p′) = η(p )◦′(η(p )◦′η(p )) 1 i 2 j 3 1 i 2 j 3 = η(p ◦ (p ◦ p )) 1 i 2 j 3 = η((p1◦jp3)◦i+q−1p2) = (η(p )◦′η(p ))◦′ η(p ) 1 j 3 i+q−1 2 = (p′1◦jp′3)◦i+q−1p′2. Thisprovesthefirstruleofassociativity. Thesecondrulescanbeprovedinthesameway. Further- morethe imageη(1) is the identity inP′. So (P′,◦′) is an operad. Remark that ifη is a bijection then p′ ◦′p′ =η(η−1(p )◦ η−1(p )). (1) 1 i 2 1 i 2 IfQ ⊂ P,thesuboperadofPgeneratedbyQisthesmallestsubsetofPcontainingQand1which is stable by composition. Let G = (G ) be a collection of sets. The set Free(G) is the set of k k n planar rootedtrees with n leaves with labeled nodes where nodes with k childrenare labeled by the elements of G . The freeoperad on G is obtained by endowing the set Free(G) = Free(G) k n n withthecompositionp1◦ip2 whichconsistsingraftingtheithleafofp1 withtherootSofp2. Note thatFree(G)containsacopyofGwhichisthesetofthetreeswithonlyoneinnernode(theroot) labeled by elements of G; for simplicitywe will identifyit with G. Clearly, Free(G) is generated byG. Theuniversalitymeansthatforanymapϕ : G → Pitexistsauniqueoperadicmorphism φ:Free(G)→Psuchthatφ(g)=ϕ(g)foreachg∈G. 3 Let ≡ be a graded equivalence relation on P. The relation ≡ is a congruence, if for any p ,p ,p′,p′ ∈ P we have p ≡ p′ and p ≡ p′ implies p ◦ p ≡ p′ ◦ p′. Hence, this natu- 1 2 1 2 1 1 2 2 1 i 2 1 i 2 rallyendowsthequotientP/ withastructureofoperad. Notethatifφ : P → P′ isasurjective ≡ morphism of operads then the equivalence defined by p ≡ p if and only if φ(p ) = φ(p ) is a 1 2 1 2 congruence. Let(P,◦)and(P′,◦′)betwooperads.ThegradedsetT(P,P′):= n∈NTn(P,P′),withTn(P,P′):= Pn ×P′n, is naturally endowed with a structure of operad whereSthe composition is defined by (p ,p′)◦(p ,p′):=(p ◦p ,p′◦′p′)withp ∈P ,p ∈P ,p′ ∈P′ ,p′ ∈P and1≤i≤k .Consider 1 1 i 2 2 1 i 2 1 i 2 1 k1 2 k2 1 k1 2 k2 1 asetStogetherwithanactionofanoperadP. Thatis,foreachp∈P wedefineamapp:Sn →S. n WesaythatSisaP-moduleiftheactionofPiscompatiblewiththecompositioninthefollowing sense: foreachp1 ∈Pm,p2∈Pn,1≤i≤m,s1,...,sm+n−1 ∈Sonehas: p1(s1,...,si−1,p2(si,...,si+n−1),si+n,...,sm+n−1)=(p1◦ip2)(s1,...,sm+n−1). Furthermore, if for each k > 0 and p , p′ ∈ P there exists a ,...,a ∈ S such that p(a ,...,a ) , k 1 k 1 k p′(a ,...,a )thenwesaythatthemoduleSisfaithful. 1 k 2.2 Multi-tildesand relatedoperads In[10],wehavedefinedseveraloperads.Letusrecallbrieflythemainconstructions. Firstwedefined the operad T = T of multi-tildes. A multi-tilde of T is a subset of {(x,y) : 1 ≤ x ≤ y ≤ n}. n n n Notethat nmeaFnsthatthesamesetbelongingintwodifferentgradedcomponentsTnandTmare consideredFasdifferentoperators. Foranypair(x,y)wedefine 1. ≫k (x,y)=(x+k,y+k) (x,y) ify<k, 2. ‘n,k(x,y)= (x,y+n−1) ifx≤k≤ y,  ≫n−1(x,y) otherwise. Theactionsofthetwooperatorsareextendedtothesetofpairsby 1. ≫k (E)={≫k (x,y):(x,y)∈E}, n,k n,k 2. ‘(E)={‘(x,y):(x,y)∈E}. Weshownthefollowingresult: Theorem1([10]). ThesetT endowedwiththepartialcompositions T ×T → T m n n+m−1 ◦i : T1◦iT2 = ‘n,i (T1)∪≫i−1(T2), isanoperad.  Wealsodefinetheoperators n,i x ifx≤i, „(x)= ( x+n−1 otherwise n,i n,i n,i n,i n,i „(x,y)=(„(x),„(y))and„(E)={„(x,y):(x,y)∈E}. Theoperad(T,◦)isisomorphictoanotheroperad(RAS,^)whoseunderlyingsetisthesetRAS= RAS where RAS denotesthe setof Reflexive and AntisymmetricSubrelations of the natural n n n oFrder≤on{1,...,n+1}. ThepartialcompositionsofRASaredefinedby R ^R =„n,i (R )∪≫i−1(R ), 1 i 2 1 2 ifR ∈ RAS andR ∈ RAS . TheisomorphismbetweenT andRASsendsT ∈ T to{(x,y+1) : 1 m 2 n n (x,y)∈T}∪{(x,x):x∈{1,...,n+1}}. See[10]formoredetails. 4 3 Breaking operads Theobjectiveofthissectionistointroducenewalgebraicobjects, namelythe precompositions. We presenthereafunctorfromthecategoryofprecompositionstothecategoryofoperads.Weshalluse thisfunctorinthesequeltoreconstructsomealreadyknownoperadsandtoconstructnewones. 3.1 Precompositions Weconsiderthemonoid definedbygenerators{ˆi,k :i∈Z,k∈N\{0}}andrelations: e ˆi,k =ˆ0,k foranyi<0. (2) ˆi,1 =ˆ0,1 =1 foranyi. (3) e ˆi,k ˆj,k′ = j+ˆk−1,k′ˆi,k ifi≤ jori,j≤0, (4) ˆi+j,kˆi,k′ =i,kˆ+k′−1if0≤ j<k′. (5) Let(S,⊕)beacommutativemonoidendowedwithafiltrationS= n∈N\{0}SnwithS1 ⊂···⊂Sn ⊂ ··· andaunity1S ∈S1. S Aprecompositionisamonoidmorphism◦: →Hom(S,S)satisfying: e ◦(ˆi,k ):Sn→Sn+k−1 (6) i,k ◦ ˆ | =Id ifn<i (7) Sn Sn (cid:18) (cid:19) i,k i,k where| denotestherestrictiontoS .Forsimplicitywedenote‘:=◦(ˆ).Let◦: →Hom(S,S) Sn n e and⊲: →Hom(S′,S′)betwoprecompositions.Amapφ:S→S′isaprecompositionmorphism e from◦to⊲ifandonlyifitisamonoidmorphismsatisfying φ:S →S′ (8) n n ⊲k→,n(φ(x))=φ ‘k,n(x) . (9) (cid:18) (cid:19) WedenotebyHom(◦,⊲)thesetofprecompositionmorphismfrom◦to⊲. Let◦ : → Hom(S,S),⊲ : → Hom(S′,S′)and^ : → Hom(S′′,S′′)bethreeprecompositions e e e together with φ ∈ Hom(◦,⊲) and ϕ ∈ Hom(⊲,^). Remark that the compositionϕφ : S → S′′ is a morphismsendingS toS′′andsatisfying n n ϕφ ‘i,k (x) =ϕ ⊲i→,k φ(x) =„i,k ϕφ(x) (cid:18) (cid:19) (cid:18) (cid:16) (cid:17)(cid:19) (cid:16) (cid:17) foreachx∈Sandeachi∈Zandk∈N\{0}. Hence,ϕφ∈Hom(◦,^). Foreachprecomposition◦ : → Hom(S,S)wedefineId := Id . Clearly,Id ∈ Hom(◦,◦)andfor e ◦ S ◦ eachφ∈Hom(◦,◦)wehaveφId =Id φ=φ. ◦ ◦ Now,ifφ∈Hom(◦,⊲),ϕ∈Hom(⊲,^)andψ∈Hom(^,(cid:3))thenwehave,straightforwardly,(ψϕ)φ= ψ(ϕφ). Hence: Proposition 1. The family PreComp of precompositions endowed with the arrows Hom(◦,⊲) for each ◦,⊲∈PreCompisacategory. 3.2 From precompositions tooperads We considera precomposition◦ : → Hom(S,S). For simplicitywe denote ≫k := 0‘,k+1 (≫k for e ◦ shortwhenthereisnoambiguity). FromSwedefineS := {a(k) : s ∈ S }andS := S . Foreach k s k k k as(k)∈Skweset S ‘i,k′ (a(k)):= ‘i,k′ (s) ifi≤k s   s otherwise,  5 and≫k′ (a(k))=0‘,k′+1(a(k)). s s Nowforeach1 ≤ i ≤ kwedefinethebinaryoperator◦i : Sk×Sk′ → Sk+k′−1 byas(k)◦ias(k′′) := a(sk′′+k′−1) wheres′′=‘i,k′ (as(k))⊕≫i−1(as(k′′))∈Sk+k′−1. Proposition2. ThesetSendowedwiththepartialcompositions◦ isanoperad. i Proof. Firstremarkthattheidentityofthestructureis1S:=a(1). Indeed: 1S 1. Wehave1S◦1as(k)=as(k′)withs′=‘1,k (a(11S))⊕≫0 (as(k)). But,‘i,k (a(11S))=‘i,k (1S)=1Sand≫0 (as(k))=s (because≫0 =◦ 1e ). Hence,s′=sand1S◦1as(k)=as(k). (cid:16) (cid:17) 2. Let1≤ i≤ k. WehaveaT(k)◦i1S =aT(k′) withs′ =‘i,1 (as(k))⊕≫k−1(a(11S)). But,‘i,1 (as(k))= ‘0,1(as(k))= s (becauseˆ0,1 =1e)and≫k−1(a(11S))=1S. Hence,s′=sandas(k)◦i1S=as(k). Now,letusprovethetwoassociativityrules: 1. Let k,k′,k′′,i,j be five integers such that 1 ≤ i < j ≤ k. Consider also s ∈ Sk, s′ ∈ Sk′ and s′′ ∈Sk′′. Applyingthedefinitionofthecomposition◦i,wefind: (as(k)◦jas(k′′))◦iaks′′′′ =as(k(3+)k′+k′′−2) where s(3) =‘i,k′′(a(k+k′−1))⊕≫i−1(a(k′′)), s(4) s′′ ands(4)=‘j,k′(a(k))⊕≫j−1(a)(k′). s s′ Sincei≤k,wehave‘i,k′′(a(k+k′−1))=‘i,k′′ s(4) . Furthermores(4) =‘j,k′(s)⊕≫j−1(s′)since j≤kand s(4) 0≤k′. Hence, (cid:16) (cid:17) ‘i,k′′(a(k+k′−1)) = ‘i,k′′(‘j,k′(s)⊕≫j−1(s′))=‘i,k′′ ‘j,k′(s) ⊕‘i,k′′ ≫j−1(s′) s(4) ! ! = ◦ ˆi,k′′ˆj,k′ (s)⊕◦ ˆi,k′′ˆ0,j (s′) ! ! From(4),wehaveˆi,k′′ˆj,k′ = j+kˆ′′−1,k′ˆi,k′′. Inthesameway,(4)givesˆi,k′′ˆ0,j =ˆ0,j i−ˆj+1,k′′andsince i−j+1≤0,therule(2)givesˆi,k′′ˆ0,j =ˆ0,k′′ˆ0,j =0,jˆ+k′′−1= j+ˆk′′−2from(5). Onededuces s(3)=◦ j+kˆ′′−1,k′ˆi,k′′ (s)⊕ j+≫k′′−2 (T′)⊕ ≫i−1 (T′′). (10) ! ! (cid:18) (cid:19) Nowexamine(as(k)◦ias(k′′′′))◦j+k′′−1aks′′ =aks˜(+3)k′+k′′−2with s˜(3)= j+k‘′′−1,k′(a(k+k′′−1))⊕j+≫k′′−2(a(k′)) s˜(4) s′ and s˜(4) = ‘i,k′′(a(k)) ⊕≫i−1(a(k′′)). Since i ≤ k and 0 ≤ k′′ we deduce s˜(4) = ‘i,k′′(s) ⊕≫i−1(s′). s s′′ Furthermore,since j≤kand0≤k′′,wehave s˜(3) = j+k‘′′−1,k′(s˜(4))⊕j+≫k′′−2(T′)=◦ j+kˆ′′−1,k′ˆi,k′′ (s)⊕◦ j+kˆ′′−1,k′ˆ0,i (s′′)⊕j+≫k′′−2s′. ! ! j+k′′−1,k′ 0,i 0,i j−i+k′′,k′ j−i+k′′,k′ But ˆ ˆ=ˆ ˆ and ‘ (s′′)=s′′from(7)since j>i. Hence,weobtain s˜(3)=◦ j+kˆ′′−1,k′ˆi,k′′ (s)⊕≫i−1(s′′)⊕j+≫k′′−2(s′)=s(3). ! Hence, (as(k)◦jas(k′′))◦iaks′′′′ =(as(k)◦ias(k′′′′))◦j+k′′−1aks′′. 6 2. Letk,k′,k′′,i,jbefiveintegerssuchthat1≤i≤k′,1≤ j≤kand1≤k,k′,k′′. Considers∈S , k s′ ∈Sk′ ands′′∈Sk′′. Applyingthedefinitionof◦i,onehas a(k)◦ (a(k′)◦ a(k′′))=a(k+k′+k′′−2). s j s′ i s′′ s(3) wheres(3) = j,k′‘+k′′−1(a(k))⊕≫j−1(a(k′+k′′−1))ands(4) = ‘i,k′′(a(k′))⊕≫i−1(a(k′′)). Sincei ≤k′ and0≤ k′′, s s(4) s′ s′′ weobtains(4)=‘i,k′′(s′)⊕≫i−1(s′′). Furthermore,j≤kand0≤k+k′−1imply s(3) = j,k′‘+k′′−1(s)⊕≫j−1(s(4)) = j,k′‘+k′′−1(s)⊕◦ ˆ0,j ˆi,k′′ (s′)⊕◦ ˆ0,j ˆ0,i (s′′) ! ! = j,k′‘+k′′−1(s)⊕◦ i+ˆj−1,k′′ˆ0,j (s′)⊕i≫+j−2(s′′). ! Now, letusexamine: (as(k)◦jas(k′′))◦i+j−1 as(k′′′′) = aks˜(+3)k′+k′′−2 withs˜(3) = i+‘j−1,k′′(as(˜k(4+)k′−1))⊕i+≫j−2(as(k′′′′)) and s˜(4) = ‘j,k′(a(k))⊕≫j−1(a(k′)). Since j ≤ k and 0 ≤ k′ we have s˜(4) = ‘j,k′(s)⊕≫j−1(s′). Since, s s′ i+j−1≤k+k′−1and0≤k′′,weobtain s˜(3) = ◦ i+ˆj−1,k′′ˆj,k′ (s)⊕◦ i+ˆj−1,k′′ˆj−1 (s′)⊕i≫+j−2(s′′) ! ! i+j−1,k′′ j,k′ j,k′+k′′−1 Buti−1<k′implies ˆ ˆ= ˆ (eq. (5). Hence, s˜(3)= j,k′‘+k′′−1(s)⊕◦ i+ˆj−1,k′′ˆ0,j (s′)⊕i+≫j−2(s′′)=s(3) ! Hence, as(k)◦j(as(k′′)◦ias(k′′′′))=(as(k)◦jas(k′′))◦i+j−1as(k′′′′). Thecompositions◦ satisfythetwoassertionsrulesandadmitaunity. ThesetShasastructureof i operad. (cid:3) WedefineOP(◦):=(S,◦)asdefinedintheconstruction. Letφ∈Hom(◦,⊲),wedefine i φOP:OP(◦)→OP(⊲) by φOP(a(k))=a(k) . s φ(s) Theorem2. ThearrowOP:PreComp→Operadwhichassociateswitheachprecomposition◦theoperad OP(◦)andtoeachhomomorphismφ∈Hom(◦,⊲)theoperadicmorphismφOPisafunctor. Proof. Wehavetoprovethreeproperties 1. OPsatisfiestheequality: IdOP=Id . ◦ OP(◦) Thisisstraightforwardfromthedefinition. 2. EachφOPisamorphismofoperad. Indeed,letφ∈Hom(◦,⊲),itsufficestocomputeφOP(a(k1)◦ s1 i a(k2))fors ∈S ,s ∈S and1≤i≤k . Wehave s2 1 k1 2 k2 1 φOP(a(k1)◦ a(k2))=a(k1+k2−1) s1 i s2 s3 where s = φ ‘i,k1(T )⊕‘0,i−1(T ) 3 1 2 ! = ⊲i→,k1 φ(s ) ⊕0⊲,→i−1 φ(s ) . 1 2 (cid:16) (cid:17) (cid:16) (cid:17) 7 Hence φOP(a(k)◦ a(k′)) = a(k) ⊲ a(k′) s1 i T2 = φφO(sP1()a(ki))φ⊲(s2φ)OP(a(k′) ). s1 i φ(s2) WededucethatφOPisanoperadicmorphism. 3. OP is compatible with the composition of homomorphisms. Indeed, let φ ∈ Hom(◦,⊲) and ϕ∈Hom(⊲,^). Foranys∈S ,wehave k ϕOPφOP(a(k))=ϕOP a(k) =a(k) =(ϕφ)OP a(k) . s φ(s) ϕ(φ(s)) s (cid:16) (cid:17) (cid:16) (cid:17) Wehavethenshownthat(ϕφ)OP=ϕOPφOP. Hence,thearrowOPsatisfiesthethreerequiredpropertiestobeafunctor. (cid:3) 3.3 Quotientsof precompositions Let ◦ : → Hom(S,S) be a precompositionand γ : S → S be an idempotent (γ2 = γ) monoid e i,k i,k morphismsendingS toS andsatisfying: ‘γ=γ‘. k k Wedefineγ:S→Sbyγa(k) =a(k). s γs Proposition3. Thetwofollowingconditionshold: 1. Foreachs∈Sk,s′∈Sk′ and1≤i≤k: γ γ(a(k))◦ γ(a(k′)) =γ a(k)◦ a(k′) s i s′ s i s′ (cid:16) (cid:17) (cid:16) (cid:17) 2. γ(s )=γ(s′)andγ(s )=γ(s′)impliesγ(a(k)◦ a(k′))=γ(a(k)◦ ak′) 1 2 2 s1 i s2 s′1 i s′2 Proof. 1. Wehaveγ(a(k))◦ γ(a(k′))=a(k)◦ a(k′)=a(k+k′−1)with s i s′ γs i γs′ s′′ s′′=‘i,k′ (a(k))⊕‘0,i (a(k′))=‘i,k′ (γs)⊕‘0,i (γs′)=γ ‘i,k′ (s)⊕‘0,i (s′) . γs γs′ ! Hence γ γ(a(k))◦ γ(a(k′)) = γ γ ‘i,k′ (s)⊕‘0,i (s′) =γ ‘i,k′ (s)⊕‘0,i (s′) s i s′ !! ! (cid:16) (cid:17) = γ ‘i,k′ (a(k))⊕‘0,i (a(k′)) =γ a(k)◦ ak′ . s s′ ! s i s′ (cid:16) (cid:17) 2. Supposeγ(s )=γ(s′)andγ(s )=γ(s′)thenwehave 1 2 2 γ(a(k)◦ ak′)=γγ(a(k)◦ ak′)=γ(a(k) ◦ ak′ )=γ(a(k) ◦ ak′ )=γ(a(k)◦ ak′). s1 i s2 s1 i s2 γs1 i γs2 γs′1 i γs′2 s′1 i s′2 (cid:3) Considernowtheequivalencerelation∼ onSdefinedforanys,s′ ∈Sbys∼ s′ ifandonlyif γ γ γ(s) = γ(s′). By definition of γ, ∼ is a monoid congruence of S and hence, S/ is a monoid. γ ∼γ Consideralsotheequivalencerelation≡ onOP(◦)definedforanya(k),a(k) ∈OP(◦)bya(k) ≡ a(k) if γ s s′ s γ s′ andonlyifs ∼ s′.Proposition3showsthat≡ isactuallyanoperadiccongruenceandhence,that γ γ OP(◦)/ isanoperad. ≡γ Lettheprecomposition ⊙:m→Hom S/∼γ,S/∼γ (11) (cid:16) (cid:17) i,k i,k definedforany∼ -equivalenceclass[s] by“ [s] :=[‘(s)] . Wethenhave γ ∼γ ∼γ ∼γ (cid:16) (cid:17) Corollary1. TheoperadsOP(◦)/ andOP(⊙)areisomorphic. ≡γ 8 Proof. Letusdenoteby◦γthecompositionmapofOP(◦)/ . Letthemap i ≡γ φ:OP(◦)/ →OP(⊙) (12) ≡γ definedforany≡ -equivalenceclass[a(k)] by γ s ≡γ φ([a(k)] ):=a(k) . (13) s ≡γ [s]∼γ Letusshowthatφisanoperadmorphism. Forthat,let[a(k)] and[a(k′)] betwo≡ equivalence s ≡γ s′ ≡γ γ classes. Onehas φ([a(k)] ◦γ[a(k′)] ) = φ([a(k)◦ a(k′)] ) = φ([a(k+k′−1)] ) = a(k+k′−1), (14) s ≡γ i s′ ≡γ s i s′ ≡γ s′′ ≡γ [s′′]∼γ i,k′ 0,i wheres′′:=‘(s)⊕‘(s′). Wemoreoverhave φ([a(k)] )⊙ φ([a(k′)] ) = a(k) ⊙ a(k′) = a(k+k′−1), (15) s ≡γ i s′ ≡γ [s]∼γ i [s′]∼γ [s′′′]∼γ i,k′ 0,i where[s′′′] :=“([s] )⊕“([s′] ). Now,byusingthefactthat∼ isamonoidcongruence,one ∼γ ∼γ ∼γ γ has i,k′ 0,i [s′′′] =“([s] )⊕“([s′] ) ∼γ ∼γ ∼γ i,k′ 0,i =[‘(s)] ⊕[‘(s′)] ∼γ ∼γ (16) i,k′ 0,i =[‘(s)⊕‘(s′)] ∼γ =[s′′] . ∼γ Thisshowsthat(14)and(15)areequalandhence,thatφisanoperadmorphism. Furthermore,thedefinitionsof∼ and≡ implythatφisabijection. Therefore,φisanoperad γ γ isomorphism. (cid:3) 4 Multi-tildes and precompositions In[10],weinvestigatedseveraloperadsallowingtodescribethebehaviourofthemulti-tildeopera- tors. Inthissection,weshowthatsomeofthemadmitanalternativedefinitionusingthenotionof precomposition. 4.1 The operadT revisited We consider the sets ST = 2{(x,y):1≤x≤y≤n} for each n > 0. Noting that ST ⊂ ST we define n n n+1 ST := n∈N\{0}STn. Considering the binary operation ∪ as a product, the pair (ST,∪) defines a commuStativemonoidwhoseunityis1ST =∅∈ST1. Thisisacommutativemonoidgeneratedbythe set{{(x,y)} }. 1≤x≤y Nowdefine◦: → Hom(ST,ST)by e i,k i,k ◦(ˆ):=‘ i,k whereeachhomomorphism‘isdefinedbyitsvaluesonthegenerators: {(x,y)} ify<i, i,k ‘({(x,y)})= {(x,y+k−1)} ifx≤i≤ y,  {(x+k−1,y+k−1} otherwise. Remarkthat◦isamonoidmorphism. Indeed, i,k 1. The setofthe homomorphisms‘generatesasubmonoidofHom(ST,ST)(which unityis Id ) ST 9 i,k i,k 2. Byconstruction,‘: STn → STn+k−1and‘|STn =IdSTn ifn<i. i,k 3. Theoperators‘satisfy(see[10]) i,k 0,k • ‘=‘foreachi<0, i,1 0,1 • ‘=‘=Id foreachi ST i,k j,k′ j+k−1,k′ i,k • ‘‘= ‘ ‘ifi≤ jori,j≤0 i+j,k i,k′ i,k+k′−1 • ‘‘= ‘ if0≤ j<k′. Hence◦isaprecomposition. Moreprecisely,theoperadT canbeseenastheoperadconstructed fromtheprecomposition◦: Proposition4. TheoperadsT andOP(◦)areisomorphic. Proof. TheisomorphismisgivenbythemapfromT toS sendinganyelementTtoa(k). (cid:3) k k T 4.2 The operadRASrevisited In[10],weconsideredanoperadRASonreflexiveandantisymmetricrelationsthatarecompatible withthenaturalorderonintegers(i.e. (x,y)∈RASimpliesx≤ y). Sincetheelements(x,x)donot playanyroleintheconstruction,weproposehereanalternativeconstructionbasedonantireflexive andantisymmetricrelations. ConsiderthesetsS^ =2{(x,y):1≤x<y≤n+1}foreachn>0. ByconstructionwehaveS^ ⊂S^ . Endowed n n n+1 with the binary operation ∪ the set S^ := n∈N\{0}S^n is a commutative monoid generated by {{(x,y)}1≤x<y}. S Letusdefine⋄: → Hom(S^,S^)by⋄(ˆi,k ):=„i,k with e {(x,y)} ify≤i, i,k „({(x,y)})= {(x,y+k−1)} ifx≤i< y, (17)  {(x+k−1,y+k−1} otherwise. SimilarlytoSection4.1,weconsiderthesubmonoidofHom(S^,S^)generatedbytheelements „i,k . Wehave„i,k : S^n → S^n+k−1 and„i,k |S^n = IdS^n whenn < i. Furthermore,theelements„i,k satisfytheproperties i,k 0,k • „=„foreachi<0, i,1 0,1 • „=„=IdS^ foreachi i,k j,k′ j+k−1,k′ i,k • „„= „ „ifi≤ jori,j≤0 i+j,k i,k′ i,k+k′−1 • „„= „ if0≤ j<k′. Themap⋄isamonoidmorphismandsoaprecomposition. WesetARAS:= OP(⋄) = (S^,⋄). The operadARASisanalternativeclosedconstructionfortheoperadRASasshownby: Proposition5. TheoperadsRASandARASareisomorphic. Proof. TheisomorphismisgivenbythemapfromRAS toS^sendinganyelementRtoa(k) ,where k k R\∆ ∆={(x,x):x∈N}. (cid:3) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.