JournalofSoundandVibration333(2014)283–306 ContentslistsavailableatScienceDirect Journal of Sound and Vibration journal homepage: www.elsevier.com/locate/jsvi On vortex–airfoil interaction noise including span-end effects, with application to open-rotor aeroacoustics Michel Rogera,n, Christophe Schramb, Stéphane Moreauc aLaboratoiredeMécaniquedesFluidesetAcoustique,ÉcoleCentraledeLyon,69134Écully,France bVonKármánInstitute,1640RhodeSt-Genèse,Belgium cDépartementdeGénieMécanique,UniversitédeSherbrooke,Québec,CanadaJ1K2K1 a r t i c l e i n f o a b s t r a c t Articlehistory: Alinearanalyticalmodelisdevelopedforthechoppingofacylindricalvortexbyaflat- Received19March2013 plateairfoil,withorwithoutaspan-endeffect.Themajorinterestisthecontributionof Receivedinrevisedform the tip–vortex produced by an upstream rotating blade in the rotor–rotor interaction 6September2013 noisemechanismofcounter-rotatingopenrotors.Thereforetheinteractionisprimarily Accepted10September2013 addressed inanannularstripoflimitedspanwiseextentbounding theimpingedblade HandlingEditor:R.E.Musafir segment,andtheunwrappedstripisdescribedinCartesiancoordinates.Thestudyalso Availableonline10October2013 addresses the interaction of a propeller wakewith a downstreamwingor empennage. Cylindrical vortices are considered, for which the velocity field is expanded in two- dimensionalgustsinthereferenceframeoftheairfoil.Foreachgusttheresponseofthe airfoilisderived,firstignoringtheeffectofthespanend,assimilatingtheairfoiltoarigid flatplate,withorwithoutsweep.Thecorrespondingunsteadyliftactsasadistributionof acoustic dipoles, and the radiated sound is obtained from a radiation integral over the actualextentoftheairfoil.Inthecaseoftip–vortexinteractionnoiseinCRORstheacoustic signatureisdeterminedforvortextrajectoriespassingbeyond,exactlyatandbelowthe tipradiusoftheimpingedbladesegment,inareferenceframeattachedtothesegment. Inasecondstepthesameproblemisreaddressedaccountingfortheeffectofspanend ontheaerodynamicresponseofabladetip.Thisisachievedthroughacompositetwo- directionalSchwarzschild'stechnique.Themodificationsofthedistributedunsteadylift andoftheradiatedsoundarediscussed.Thechainedsourceandradiationmodelsprovide physicalinsightintothemechanismofvortexchoppingbyabladetipinfreefield.They allowassessingtheacousticbenefitofclippingtherearrotorinacounter-rotatingopen- rotorarchitecture. &2013ElsevierLtd.Allrightsreserved. 1. Introduction Thispaperpresentsananalyticalinvestigationontheimpingementofacylindricalvortexonathinrigidairfoilandthe associatedsoundradiation.Thevortexaxisisassumedinaplaneperpendiculartotheairfoilplane.Thisgenericvortex–airfoil interaction mimics a class of mechanisms encountered in rotating blade technology, for which the associated acoustic signatureisacrucialconcern.Inparticularthemainmotivationoftheworkistheunderstandingofblade–tipeffectsinthe rotor–rotorinteractiontonalnoisegeneratedbyadvancedcounter-rotatingopenrotors(CRORs).CRORsareidentifiedasan nCorrespondingauthor.Tel.:þ33472186011;fax:þ33472189143. E-mailaddress:[email protected](M.Roger). 0022-460X/$-seefrontmatter&2013ElsevierLtd.Allrightsreserved. http://dx.doi.org/10.1016/j.jsv.2013.09.012 284 M.Rogeretal./JournalofSoundandVibration333(2014)283–306 Nomenclature ðx ;x ;x Þ observerCartesiancoordinates 1 2 3 ðy ;y ;y Þ sourceCartesiancoordinateswithoutsweep 1 2 3 A0 amplitudefactoroftheexponentialvortex ðy′1;y′2;y3Þ sourceCartesiancoordinateswithsweep a;a ;a ;bcombinednon-dimensionalwavenumbers ðX;YÞ axialandtangentialcoordinates 1 2 c airfoilchord α skewnessangleofagust c speedofsound γ staggerangleofablade 0 e blade–tiptovortex–radiusdistance Γ qffiffiffiffiffiffiffiffivffiffiffioffiffiffiffirtexstrength E;En Fresnelintegrals β¼ 1(cid:2)M2 compressibilityparameter G~ two-dimensionalwavenumberspectrum qffiffiffiffiffiffiffi0ffiffiffiffiffiffiffiffiffiffi I¼I1þI2 chordwiseradiationintegrals β1;2¼ 1(cid:2)M21;2 partialcompressibilityparameter K totalnon-dimensionalaerodynamic κ;κ′ supercriticalandsub-criticalHelmholtz wavenumber parameters k¼ω=c0 acousticwavenumber λ acousticwavelength ðk1;k2Þ chordwiseandspanwiseaerodynamic ϕ;ϕ′;Φ velocitydisturbancepotentials wavenumbers φ vortexinclinationangle ðk′1;k′2Þ sameasðk1;k2Þwithsweep Φð0Þ complexerrorfunctionwithcomplexarguments L¼2d spanlength ψ sweepangle ℓ¼ℓ1þℓ2 unsteadyliftonabladesegment ρ0 meanfluiddensity M0;1;2¼U0;1;2=c0 Machnumbers ω angularfrequency p acousticpressure Ω fanrotatingspeed ðr;θÞ cylindricalcoordinatesaroundvortexaxis r0 vortexcoreradius Subscripts/superscripts R radiusofrotorannulus 0 S0 convection-correcteddistance ð(cid:3)Þn madenon-dimensionalbyc/2,orcomplex T relativerotor–rotorinteractionperiod conjugate U0 incidentflowspeed ð(cid:3)~Þ;ð(cid:3)^Þ Fouriertransforms U chordwiseconvectionspeed c ð(cid:3)Þ incident-flowrelatedquantity V¼ΩR tangentialspeed 0 0 ð(cid:3)Þ chordwisequantity w upwashvelocity(normaltoabladesurface) 1 ð(cid:3)Þ spanwisequantity w gustamplitude 2 0 alternativetotheturbofan-enginetechnologyforfutureaircraftpropulsion.Theyarecharacterizedbylowerfuelconsumption andhigherpropulsiveefficiencyassociatedwithequivalentveryhighby-passratios,upto25or30.Butthemainconcernis aboutthenoiseexposurearoundairportsduringtake-offandlandingbecausethebladesoperateinfreefield.Furthermore evenifaCRORsystemismountedattherearofafuselageinordertominimizecabinnoise,thecomfortofpassengersremains anotherchallengingissue.Thisiswhyeffortsarepresentlymadeintheaeroacousticcommunitytowardsacousticprediction strategiesthatcanbeusedattheearlydesignstage,inordertodefinelow-noiseconfigurationswiththehelpofoptimization algorithms. The most annoying acoustic signature of CRORs at low and moderate frequencies is tonal noise associated with all periodic aerodynamic fluctuations experienced by the rotating blades. This includes various mechanisms. Typically the mounting on the airplane is responsible for stationary inflow distortions due to the vicinity of the fuselage, the flow deviation associated with the mean lift of the wing and the wake of the pylon. This contribution is not intrinsic to the technologybutisratherqualifiedasaninstallationeffect.Itradiatesatharmonicsofthebladepassingfrequenciesofboth rotorsandinvolvesbothrotorsnearlyindependently.Othersourcesareintrinsictothecounter-rotatingpropulsivesystem inthesensethattheydonotessentiallydependontheinstallation.Firstly,thewakesshedfromthefrontrotorimpingeon thebladesoftherearrotorandproducewhatiscalledwake–interactionnoise.Secondly,thepotentialfieldoftherearrotor caninduceliftfluctuationsonthebladesofthefrontrotor,generatingpotential-interactionnoise.Finally,thetipvortices shed fromthefront rotorcan alsobechopped bytherearrotordependingon thecompared tipradiiand/oroperational conditions.Bothwakeimpingementandblade/tip–vortexinteractionsinvolvesourcesdistributedontherear-rotorblades, whereas potential-interaction noise is radiated from the front rotor. All these interactions radiate at linear combinations of multiples of the blade passing frequencies of both rotors, for this reason the acoustic signature is referred to as combinationtones.Thepresentfocusisonthefundamentalaspectsofblade/tip–vortexinteraction.Itisworthnotingthat themechanismdiffersfromthewell-knownblade–vortexinteraction(BVI)thatoccursonthemainrotorsofhelicopters.In typicalBVIthevortexaxisandthebladespanlieinalmostparallelplanes.Forthemostincriminatedoperationalconditions the excitation by the oncoming vortex extends over a wide portion of the span. For the blade/tip–vortex interaction on CRORs, the plane tangent to the vortex helical path and the blade span are roughly perpendicular to each other. The impingementconcentratesonthebladearoundthespanwise/radiallocationofthevortexpath.Thisiswhydesigningrear rotorbladeswithshortertipradiusthanthefrontrotorblades,calledclippingorcropping,isapossiblewayofavoidingor M.Rogeretal./JournalofSoundandVibration333(2014)283–306 285 minimizingthisinteractionandtheresultingnoise.Neverthelesstheinteractioncanhavearesiduallevel,eitherbecauseof theextensionofthevortexouterpartorbecauseofthecontractionofthefront-rotorstreamtube.Furthermoreside-winds or flight incidence possibly deflect tip vortices and make them interact with blade tips even in the presence of clipping. This justifies a specific address of the mechanism. The present contribution is a mathematical analysis dealing with two complementaryaspectsofvortex–airfoil interactions. The firstaspect isthemodelingof thetip–vorticesshed fromrotor bladesforthesakeofdescribingtheirsubsequentimpingementondownstreamsurfaces.Thesecondone,specifictoCRORs, istheeffectofbladeterminationattheouterradiusofarear-rotorbladeontheresponseofthatbladetoanoncomingfront- rotortip–vortex.Initsfinalandcompleteformtheaddressedmechanismcanthenbereferredtoasblade–tip/tip–vortex interaction(BTTV). Apart from CROR aeroacoustics, oblique and more general vortex–rotor interactions are encountered in rotorcraft technology,typicallyasthetipvorticesgeneratedbythemainrotorofahelicopterarechoppedbythetailrotor[1].The genericproblemofvorteximpingementonanextendedairfoilalsopossiblymimicsthemechanismofnoiseproductionby interaction of blade–tip vortices with any downstream lifting surface of an airplane. This includes the interaction of the vorticesshedbyconventionalpullingturbopropswiththeleadingedgeofawing[2],ortheinteractionofthewakefroma highlyloadedCRORwithatailempennage.Becausetheassociatedtonalnoiseofinstalledpropellersisseldomaddressedin theliterature,someinteresthasbeenfoundinprovidingphysicalinsightintoit;thisisasecondaryobjectiveofthepaper. 2. Methodologyandproblemstatement ForthinbladesoperatinginsignificantlydisturbedflowsandatthesubsonicMachnumberscharacteristicoftake-offand landingregimesofCRORs,FfowcsWilliamsandHawkings'formulationof theacousticanalogy[3,4]statesthatthenoise is essentially produced by unsteady lift forces distributed on the blades. These forces act as equivalent acoustic dipoles radiating in a homogeneous propagation medium. Once they are known the sound field is simply obtained from the background of linear acoustics, therefore the critical task is to determine the forces first. When dealing with open-rotor tonalnoisetheforcesareperiodicandcanbesimulatedaccuratelybyComputationalFluidDynamics,forinstanceUnsteady Reynolds-AveragedNavier–Stokesmethods[5–8].Thisrequiresprohibitivecomputationalresources.Fast-runninganalytical techniquesaremuchmorecompatiblewiththeneedforrepeatedcalculationsinthecontextofoptimizationalgorithms. Thecounterpartisthatcrudesimplificationsareoftenmadeofboththeflowfeaturesandthegeometryoftheblades. NowtheliftdipolesofCRORtonalnoisearecoherentsourcesdistributedoverhighlynon-compactbladescharacterized by sweep, twist and variable chord. They interfere in a way that must be reproduced with minimum inaccuracy so that thenoiseestimatesmakesense.Thisaccuracyrequirementisbeyondtheperformancesofmostexistinganalyticaltheories which state about the aeroacoustic response of rectangular flat-plates free of tip effects. The sound-generating flow disturbancessuchaswakesortipvorticesalsoneedbeingproperlydescribedinathree-dimensionalcontext.Itappearsthat gettingaphysicallyconsistentevaluationofthetonal-noisesourceswithanalyticalmethodsismuchmorechallengingthan describingthesourcesofbroadbandnoise.Indeedthestatisticaldescriptionofrandomlydistributedsourcesislesssubject tointerferenceissues[9].Inatonal-noisecontextitisessentialtoextendtheanalyticalapproachsothatkeyfeaturesofthe realdesignareaccountedforintheblademodel. Thepresentdevelopmentsstartfromthelinearizedtheoryofthinflat-plateresponsetooncomingfrozendisturbances. As an alternative to the approach proposed by Howe [10], they are basically similar to Amiet's theory of vortex–airfoil interaction[11],inwhichtheimpulsivenoiseproducedbyasinglevortexchoppingisderivedinthetimedomainfroma responsefunctionoftheairfoilviainverseFouriertransform.Incontrastthewholeanalysisisheremadeinthefrequency domain because it is dedicated toperiodic interactions. Vortexchopping is interpretedas pure variations of the angle of attack around zero mean loading. As a consequence vortex stretching at the leading-edge stagnation point and vortex deformationbyinductionofthebladecirculationareignored(see[12,13]).Theyarebelievedtobeofminorimportancefor thinCRORbladesbecausetheradiusofcurvatureoftheleadingedgeisverysmall.Incontrastassumingfrozenoncoming vorticeswouldproducewrongacousticestimatesforthicksurfacessuchasaircraftwingsorhelicopterblades[14].Other problemstatementstakingintoaccounttheactualairfoildesignareproposedforinstancebyLeppingtonandSisson[15]. Fromanotherstandpointtheinterestofthepresentstudyisthatitaddressestheeffectofairfoilspanendontheunsteady aerodynamicresponse. Despitetheiridealizedcharacterthedevelopmentsareafirstattempttoincludetipvorticesinanefficientmethodology of CROR tonal noise prediction currently developed elsewhere for wake–interaction noise [16,17,7]. A similar approach basedonamodelofhelicalvorticesisdescribedbyKinganandSelf[18].Theproblemoftheeffectofbladeterminationon theresponsetoincidentdisturbanceswasfirstconsideredbyRogerandCarazo[16]anddeclinedtothecaseofanincident Oseen'svortexbyRogerandSchram[19]andbyRogeretal.[20].Thepresentworkextendsandcontinuespreviousstudies byincludingbotharbitraryvortexangleandbladesweepangle.Forthesakeofcheckingthesensitivitytothedescriptionof theoncomingdisturbancesaso-calledexponential-vortexmodelisalsoconsideredasalternativetoOseen'smodel.Finallya parametricstudyoftheeffectofradialdistancebetweenthevortexpathandthebladetipisperformed,inordertoassess thebenefitofclipping. Theanalyticaldevelopmentsresorttoastrip-theoryapproach,accordingtowhichapropellerbladeanditssurrounding are split into thin annuli. Each annulus is unwrapped for the sake of locally describing the interaction in Cartesian coordinates. The unsteady aerodynamic response of a blade segment is determined as if it was in a translating motion 286 M.Rogeretal./JournalofSoundandVibration333(2014)283–306 tangenttotherealhelicalmotion.Thisapproachallowsapplyingairfoilresponsefunctionsbasedontheassumptionoflocally homogeneous flow conditions in both streamwise and spanwise directions, and at the same time introducing spanwise variations bychanging the geometrical and aerodynamic parameters from one annular strip to another. Conventionally the analysisisrestrictedtoasinglestripcenteredontheradiusofthetip–vortexpath.Boththeonsetofunsteadyliftandthefar- fieldradiationareconsideredinareferenceframeattachedtoanisolatedbladesegment,inordertoprovideaclearinsightinto theintrinsiccontributionsofvortexcirculation,combinedvortexandblade-chordangles,radialtip/vortexdistanceandother parameters tothe radiationefficiency.Therotational motionof ablade segmentand thedescriptionof thesound field ina stationaryreferenceframeareoutofthescopeofthepresentpaper. TheconfigurationofaCRORsystemwithrotorsofequalradiiisshowninFig.1a.Foranalyticalpurpose,theimpinged bladesegmentisapproximatedbyasweptparallelogramofconstantchordcdefinedperpendiculartotheleadingedge.Itis featured by the gray surface in Fig.1b and can be shifted along the spanwise direction y′ in order to generate different 2 configurations relative to the incident vortex. Two reference frames are introduced, with axes along the chordwise and spanwisedirectionsy′ andy′,andalongthestreamwiseandnormaldirectionsy andy ,respectively.Notethattherelative 1 2 1 2 streamisassumedalongthey directionforconsistency.Coordinatesmadedimensionlessbythehalfchordlengthc/2and 1 denotedbystarswillalsobedefinedforfurtherderivationsinSection4.Thecomplementarydescriptionintheunwrapped mid-planeofthestripisdefinedinFig.2forthecaseofzerosweepψ¼0.Sweepisintroducedafterwardsbymakingthe airfoilrotateintheclockwisedirectionaroundthey -axisfromthezero-sweepconfiguration. 3 Becausethenumberofbladesismoderateintheapplicationsandthesolidityissmallatthetip,theresponseofabladeis notsignificantlyinfluencedbythepresenceofadjacentblades;thereforeisolated-airfoilresponsefunctionsareconsidered. The latter are also best suited in the case of an impinged wing or empennage. The excitation of the blade segment, its aerodynamicresponseandtheassociatedsoundradiationareaddressedinwhatfollowsasthreedistinctmodelingsteps. FirsttheanalyticalvortexmodelsandtheirgustexpansionsaredetailedinSection3below.Theaerodynamicresponseof a blade segment is discussed in Section 4 as if it had an infinite span. Yet the radiated sound is further calculated by Fig.1. (a)Schematicviewoftip–vortexinteractioninaCROR,featuringthetipannulusaddressedinthemodel,caseofequalradii.(b)Setsofcoordinates attachedtoasweptblade–tipsegment.NotethatsweepisdefinedbackwardinthedesignofCRORs,intheclockwisedirectionintheaxesðy ;y Þ. 1 2 M.Rogeretal./JournalofSoundandVibration333(2014)283–306 287 Fig.2. Setsofcoordinatesforthestatementofvortex–airfoilinteractionwithnosweep,from[19].Non-zerosweepisintroducedthroughadditionalairfoil rotationaroundthey3-axis,accordingtoFig.1b. integrating the sources over the actual span for various vortex trajectories. The effect of the termination of the blade segmentisaccountedforbymeansofatipcorrectionderivedinSection5,wherethesoundradiationisre-considered.This allowspointingatnotonlythecombinedeffectsofvortexandbladefeatures,butalsotheeffectofthetipresponse,onthe soundpredictions. 3. Tip–vortexmodel 3.1. Gustexpansionofmodelvortices—zerosweep The blade/tip–vortex interaction is described first assuming zero sweep in this section, using the coordinate systems illustratedinFig.2.Theselectedstripfortheanalysishasthesamemeanradiusasthehelicalpathoftheincidentvortex. Thisradiuswillbetakenastheoriginofthespanwisecoordinatey .Forsubsequentanalyses,theblade–tipsectionwillbe 2 consideredateitherpositiveornegativevaluesofthatcoordinate.Accordingtothelinearizedairfoiltheory,theunsteady loadsonabladedependessentiallyonthenormalvelocityperturbationinducedbytheincomingvortex,expressedinthe ðy ;y ;y Þcoordinatesystemattachedtotheblade.Itisassumedthatthevortexdiffusiontakesplaceoverdistanceswhich 1 2 3 remainlargewhencomparedtothebladechord,sothatthetraceofacylindricalline-vortexdescriptionisrelevantinthe unwrapped plane of coordinates (X, Y) with angle φ between the vortex axis and the tangential direction Y (Fig. 2). Any consistentvortexmodelcombinesasolid-bodyrotationcoreandsomeradialdecreaseofthetangentialvelocityprofilein theouterregion.Thefree-vortexOseenmodelVθðrÞ¼ðΓ=rÞ½1(cid:2)e(cid:2)ðr=r0Þ2(cid:4),where2πΓandr0arethecirculationandthecore- radiusparameter,respectively,isusuallyselectedforitsanalyticaltractability.Onceprojectedinthereferenceframeofthe consideredbladesegment,thecorrespondingupwashiswrittenas w(cid:3)y ;y ;t(cid:4)¼(cid:2)Γ cosðγþφÞy 1(cid:2)e(cid:2)ðy22þsin2ðγþφÞ½y1(cid:2)Uct(cid:4)2Þ=r20 (1) 1 2 2 y2þsin2ðγþφÞ½y (cid:2)U t(cid:4)2 2 1 c introducingthephasespeedU ¼ sinφ V=sinðγþφÞalongthechordline,whereV¼ΩR denotesthetangentialspeedof c 0 thebladesegmentrelativetothevortex(R isthemeanradiusoftheconsideredstripandΩtherelativerotationalspeed). 0 Though U does not coincide with the relative flow speed U introduced in Fig.1b, both will be assumed equal for the c 0 preliminaryinvestigationsachievedinthepaper.γisthestaggerangleoftheblades.NotethatAmiet'sanalysis[11]isbased onthesamevortexmodelwrittendifferentlyas (cid:5) (cid:6) h i VθðrÞ¼ 1þ21a rr0v0 1(cid:2)e(cid:2)aðr=r0Þ2 wherethevaluea¼1.25643ensuresthatthemaximumspeedisexactlyobtainedforr¼r . 0 Elementary blade/tip–vortex impingement is an impulsive mechanism, but its declination in the context of CRORs is periodicwiththerelativeblade-passingperiodofthefrontrotor,notedT,asseenfromtheaforementionedreferenceframe. Assuchitcanbeanalyzedinthefrequencydomaininthesamewayaswhatiscurrentlydoneforwake–interactionnoisein turbomachines.Thischoiceisinherenttotheunsteadyaerodynamicmodeldescribedlateroninthepaper.ThetimeFourier transformofthesignalwðy ;y ;tÞaccordingtotheconventione(cid:2)iωt formonochromaticwavesandforpositivefrequencies 1 2 288 M.Rogeretal./JournalofSoundandVibration333(2014)283–306 isfirstderivedas[21] Z w~ðωÞ¼ 1 1 w(cid:3)y ;y ;t(cid:4)eiωtdt¼(cid:2)ΓcotðγþφÞeik1y1(cid:7)h(cid:3)(cid:2)y (cid:4)(cid:2)h(cid:3)y (cid:4)(cid:8) (2) 2π 1 2 4U 2 2 (cid:2)1 c with (cid:9) (cid:5) (cid:6)(cid:10) h(cid:3)y2(cid:4)¼eik1y2=sinðγþφÞ 1(cid:2)erf 2sink1ðrγ0þφÞþyr2 0 andk ¼ω=U ,erfdenotingtheerrorfunction.Thisisanoddfunctionofy ,asexpected. 1 c 2 Another model vortex with a much faster exponential decay of the tangential velocity profile as VθðrÞ¼A0re(cid:2)r=r0, A0 beinganotherconstant,canbeproposedasanalternativeifthe1/rdecayisconsideredabusivelyslow,eventhoughitis incompatiblewiththedefinitionofanon-zerocirculation.Itisworthnotingthatstill anotherexpression isproposedby GeorgeandChou[1]as Γ r2 VθðrÞ¼ rr2þr2 0 whoalsostressedthatverysimilaracousticsignaturesareproducedbythismodelandtheOseenvortexvelocitylaw.The three model expressions are compared in Fig. 3 where it is found that they produce similar velocity profiles around the maximum, thus similar descriptions of the vortex core, provided that the parameters are properly tuned. Helical vortex modelsdedicatedtoCRORshavebeenproposedbyKinganandSelf[18];theyarenotassessedherebecausetheemphasisis onthelocalimpactaroundthetipofanimpingedblade.OnlytheOseenandexponentialmodelsareretainedlateron.The lackofconsistencyoftheexponentialvortexisnotanissueherebecausetheanalysisresortstothevelocityfieldandnotto vorticity.Verydifferentmodelsarejusttheopportunityofassessingthesensitivityofthefinaltrendswithrespecttothe descriptionofthevortices. Theupwashoftheexponentialvortexiswrittenas wðy1;y2;tÞ¼(cid:2)cosðγþφÞA0y2e(cid:2)fy22þsin2ðγþφÞ½y1(cid:2)Uct(cid:4)2g1=2=r0 (3) andthetimeFouriertransformreads[21] 2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 (cid:5) (cid:6) (cid:5) (cid:6) w~ðωÞ¼ q(cid:2)ffi2ffiffiffiAffiffiffi0ffiffiffifficffiffioffiffiffisffiffiffiðffiffiγffiffiþffiffiffiffiffiφffiffiÞffiffiffieffiffiffiiffikffi1ffiffiyffiffi1ffiffiffiffiffiffiffiy2K 4y 1 2þ k1 25 (4) r ω2þðsinðγþφÞU =r Þ2 2 1 2 r0 sinðγþφÞ 0 c 0 for y 40 , where K is the modified Bessel function. Since the cut through a vortex features antisymmetric signals and 2 1 becausenegativeargumentsofK leadtomathematicaldifficulties,theresultfory o0mustbetakenastheoppositeofthe 1 2 onefory 40. 2 Thespectralcontentoftheimpingementdependsonthespanwisecoordinatey .Forthesakeofderivingtheinduced 2 unsteadyloadsfromSchwarzschild'stechniquelateroninthepaper,theexpressionoftheupwashmustbenowexpanded insinusoidalgustsinthespanwisedirection,resortingtoaspaceFouriertransformeventhoughsuchatransformseems Fig.3. ModeltangentialvelocityprofilesoftheOseenvortex(—),GeorgeandChou'svortex(––)andtheexponentialvortex(——).Modelparameters indicatedontheplots. M.Rogeretal./JournalofSoundandVibration333(2014)283–306 289 somewhatinappropriateforconcentratedpatterns: Z h i G~ðk1;k2Þ¼21π 1 w~ðωÞe(cid:2)ik1y1 e(cid:2)ik2y2 dy2: (cid:2)1 Thisfinallyprovidesthecomplexamplitudeofthegustofwavenumbersðk ;k Þas[21] 1 2 G~ðk ;k Þ¼iΓk2cotðγþφÞe(cid:2)r20ðk22þ½k1=sinðγþφÞ(cid:4)2Þ=4 (5) 1 2 2πUc k22þ½k1=sinðγþφÞ(cid:4)2 fortheOseenvortex.Similarlytheresultfortheexponentialvortexisderivedintroducingthegenericfunctionx2K ðxÞand 1 itsFourierintegral Z F~ðkÞ¼ 1 1 x2K ðxÞe(cid:2)ikxdx 2π 1 (cid:2)1 withK ðxÞ¼K ðxÞforx40andK ðxÞ¼(cid:2)K ð(cid:2)xÞforxo0.Theresultisfoundas[21] 1 1 1 1 8 (cid:5) (cid:6) (cid:5) (cid:6)9 >><F 4;3;7;(cid:2)1(cid:2)ik F 4;3;7;(cid:2)1þik >>= F~ðkÞ¼pΓffiðffiffi4ÞΓð2Þ 2 2 1þik (cid:2) 2 2 1(cid:2)ik πΓð7=2Þ>>: ð1þikÞ4 ð1(cid:2)ikÞ4 >>; ~ where F stands for the general hypergeometric functions. Note that here F is a pure imaginary and odd function of its argument.Thecomplexamplitudeofthegustofwavenumbersðk ;k Þfinallyreads 1 2 (cid:5) (cid:6) G~ðk ;k Þ¼(cid:2)2A0cotðγþφÞ1F~ k2 (6) 1 2 r0Uc Q4 Q with "(cid:5)1(cid:6)2 (cid:5) k (cid:6)2#1=2 Q¼ þ 1 r sinðγþφÞ 0 fork 40. 2 ThealgorithmforthehypergeometricfunctionsisbasedonGauss'seriesofGammafunctions[22] ΓðcÞ 1 ΓðaþnÞΓðbþnÞZn Fða;b;c;ZÞ¼ ∑ : ΓðaÞΓðbÞ ΓðcþnÞ n! n¼0 Theseriesconvergesonlyforc4bþaandmayfeaturesomeoscillationswhentheconditionisapproached.Thereforethe valuesofaandbarereducedbymakinguseofpropertiesofcontiguoushypergeometricfunctions.Thepresentcalculations relyonthefollowingrelationshipstogetFð4;3=2;7=2;ZÞ[22]: (cid:3) (cid:4) (cid:2)ð3(cid:2)ZÞ (cid:3) (cid:4) 5(cid:2)3Z (cid:3) (cid:4) F 4;3=2;7=2;Z ¼ F 2;3=2;7=2;Z þ F 1;3=2;7=2;Z ; 8ðZ(cid:2)1Þ 8ðZ(cid:2)1Þ2 (cid:3) (cid:4) (cid:2)6 (cid:3) (cid:4) 5(cid:2)3Z (cid:3) (cid:4) F 2;3=2;7=2;Z ¼ F 2;(cid:2)1=2;7=2;Z þ F 2;1=2;7=2;Z : Z(cid:2)1 Z(cid:2)1 ~ ThewavenumberspectrumGoftheOseenvortexisillustratedinFig.4.Aqualitativelysimilarplotwouldbeobtainedfor theexponentialvortex.Dependingontherelativevaluesofthewavenumbersk andk ,twosetsofgustsaredefined.When 1 2 k 4M k =β2,thegustissaidtobesub-critical;otherwiseitissaidsupercritical.Themeaningofthisnotionisdiscussedin 2 0 1 Section4.1.Thetransitionbetweentherangesofsub-criticalandsupercriticalgustsisfeaturedbytheverticalgrid-planein thefigure.Itisremarkablethatmoreenergyisdistributedinthesub-criticalrange. 3.2. Periodicinteractioninopen-rotorarchitecture Theperiodicimpingementofsuccessivetipvorticesissimplyreproducedbyduplicatingthepreviouslyderivedsolutions viaaninfiniteseries,accordingtotheconvolutionproduct 1 1 f ðtÞ¼ ∑ wðy ;y ;t(cid:2)nTÞ¼wðy ;y ;tÞn ∑ δðt(cid:2)nTÞ W 1 2 1 2 n¼(cid:2)1 n¼(cid:2)1 with T¼2πR =ðBVÞ, where B is the number of blades. The resulting signals for the two investigated model vortices are 0 shown in Fig. 5. Despite the difference in the description of a single vortex, combining a series of vortices to simulate theperiodicinteractionprovidesverysimilarvelocityprofilesinthepresentcase.Thissuggeststhatselectingonemodelor theotheronemakesnegligibledifferences.Neverthelessbotharedetailedinthisstudyforcompleteness.Thefigurealso compares the model tangentialvelocityprofiles tonumerical predictions based on Unsteady RANS simulations, achieved on a full open-rotor architecture [23]. The radialvelocityis extracted at two different axial locations fromthe numerical mesh,as themostrepresentative quantity forthe tipvortex.The negativemean-valueof the profilesis attributedtothe 290 M.Rogeretal./JournalofSoundandVibration333(2014)283–306 Fig.4. Two-dimensionalgust-wavenumberspectrumoftheincidentupwashoftheOseenvorteximpingingonarectangularunsweptblade.SeeSection4.1 for definitions. Parameters: γ¼251, φ¼201, V¼300m/s, r0¼5cm, Γ¼4m2/s. The value of the blade passing frequency (BPF) chosen for illustration inFig.9isshownbythedashedarrow. contractionofthestreamtubeofthefrontrotor.Themodelprofilesnicelyrecoverapartofthenumericalresults,atleastfor theshortestdownstreamdistanceof0.3chordlength.Someasymmetryisfoundinthesimulatedpatterns,departingfrom theanalyticalmodels.Thisasymmetryincreasesfartherdownstream.Itisattributedtothedynamicsofthevortexandmore precisely its coupling with the complementary accelerations induced by the swirl of the front rotor. The comparison confirms that the aforementioned models are physically consistent but that they should be improved to include swirl- induced asymmetry in a future work. The velocity profiles could also be taken directly from the simulations to provide alternative,numericalvaluesofthefunctionG~ðk ;k Þ. 1 2 TheFourierseries (cid:5) (cid:6) f~ ðωÞ¼ ∑1 f δ(cid:3)ω(cid:2)n2π=T(cid:4) withf ¼2πw~ 2π W n n T T n¼(cid:2)1 ofaperiodicvortextrainselectsdiscretefrequenciesinpracticalapplications.Thereforesimplyaddressingtheinteractionat asinglefrequencyfromanyexpressionofw~ makessense.Withinthescopeofacompletemodelingofopenrotors,thegust- splittingofaseriesofvorticeswouldbeusedtoderivefirsttheunsteadyloadsonablade–tipsegment.Thesegmentwould bediscretizedasasetofpatchesandthefar-fieldradiationcalculatedapplyingHanson'sformulation[24]ortheequivalent implementationderivedbyCarazoetal.[17].Thedeclinationofthemodelinarotating-bladeconfigurationisbeyondthe scopeofthepaper. 4. Infinite-airfoilresponsefunctions Theresponseofaninfinite-spanairfoiltoarbitraryincidentgustsisformulatedinthissectioninthegeneralconfigurationof Fig.1b.Withrespecttotheaxesðy′;y′Þ,sweepisequivalenttoanon-zerospanwisecomponentU oftheincidentflowspeed. 1 2 2 FromthisgeneralframeworktheresponseofanunsweptairfoilfollowsbyjustsettingU ¼0. 2 4.1. Expressionsoftheunsteadylift Considerthesinusoidal,normal-velocitygustwðy′;y′;tÞ¼w ðk′;k′Þexpfiðk′y′ þk′y′ (cid:2)ωtÞge ,convectedovertheairfoil 1 2 0 1 2 1 1 2 2 3 attheobliquespeedU ¼U e þU e .Theimpingementofthegustgeneratesapotentialvelocitydisturbanceu′¼∇ϕ′such 0 1 1 2 2 thatϕ′issolutionofthegeneralconvectedHelmholtzequation (cid:5) (cid:6) ∂2ϕ′ ∂2ϕ′ ∂2ϕ′ ∂ϕ′ ∂ϕ′ β2 þβ2 þ þ2ik M þM 1∂y′2 2∂y′2 ∂y2 1∂y′ 2∂y′ 1 2 3 1 2 ∂2ϕ′ (cid:2)2M M þk2ϕ′¼0 (7) 1 2∂y ∂y 1 2 M.Rogeretal./JournalofSoundandVibration333(2014)283–306 291 30 20 10 0 s ) −10 m/ ( θ −20 v −30 −40 −50 −60 −10 0 10 20 30 40 50 60 70 azimuth (°) 30 20 10 0 s ) −10 m/ ( θ −20 v −30 −40 −50 −60 −10 0 10 20 30 40 50 60 70 azimuth (°) Fig.5. Comparedperiodictip–vortexvelocityprofilesaccordingtoOseen'svortexmodel(–(cid:3)–),exponentialvortexmodel(——)andURANScomputations ð(cid:5)Þ[23].(a)30percentchorddownstream;(b)50percentchorddownstream.Parameters:ðΓ;r0Þ¼ð1:5m2=s;2:5cmÞ,(A,r0)¼(3700s(cid:2)1,2.7cm). qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi withk¼ω=c ,β ¼ 1(cid:2)M2,β ¼ 1(cid:2)M2,M andM beingthechordwiseandspanwiseMachnumbers,respectively.The 0 1 1 2 2 1 2 boundaryconditionsony ¼0arethecancellationofthepotentialupstreamoftheleadingedgeðy′ o0Þ,thecancellationof 3 1 thenormalvelocityontheairfoilsurfaceð0oy′ ocÞandtheKuttaconditionatthetrailingedgeanddownstreamðy′ 4cÞ. 1 1 Sincenoconditionisimposedalongthecoordinatey ,thedisturbancepotentialissoughtaccordingtotheincidentgust 2 obliquenessasϕ′¼ϕðy′1;y3Þeiðk′2y′2(cid:2)ωtÞ,sothatthereducedconvectedHelmholtzequationonϕisobtainedasfollows: (cid:11) (cid:12) (cid:11) (cid:12) ∂2ϕ ∂2ϕ ∂ϕ β2 þ þ2i kM (cid:2)M M k′ þ k2(cid:2)k′2β2(cid:2)2M kk′ ϕ¼0: (8) 1∂y′2 ∂y2 1 1 2 2 ∂y′ 2 2 2 2 1 3 1 This leads to the canonical Helmholtz equation for the transformed velocity potential Φ¼ϕðy′1n;yn3ÞeiM21k′1ny′1n=β21 once the coordinatesandwavenumbersaremadedimensionlessbyc/2(superscriptn): ∂Φ ∂Φ þ þκ2Φ¼0; (9) ∂y′n2 ∂yn2 1 3 where ! (cid:9) (cid:10) k′n2 M2 1 κ2¼ 2 1 (cid:2)1 ¼μ2 1(cid:2) ; Θ¼μβ =k′n β4 sin2α Θ2 1 2 1 292 M.Rogeretal./JournalofSoundandVibration333(2014)283–306 with μ¼k′nM =β2, k′n¼K cos α and k′n¼K sin α, introducing the gust skewness angle αand the total non-dimensional 1 1 1 1 2 aerodynamic wavenumber K¼jKj such that ωc=2¼U (cid:3)K¼U k′nþU k′n¼U kn with kn¼K cosðα(cid:2)ψÞ. Θ is known as 0 1 1 2 2 0 1 1 Graham'sparameter[25]. Schwarzschild'stheorem[26]aimedatsolvingEq.(9)withtheboundaryconditions Φðy′n;0Þ¼fðy′nÞ; y′n40; 1 1 1 ∂Φ ∂yn3jyn3¼0¼0; y′1no0; wherefisaknownfunction,statesthatthetraceofthepotentialonthecomplementaryhalf-spacey′no0reads Z 1 Φ(cid:3)y′1n;0(cid:4)¼1π 1ð(cid:2)y′1n=ξÞ1=2(cid:7)1=(cid:3)ξ(cid:2)y′1n(cid:4)(cid:8)eiκðξ(cid:2)y′1nÞfðξ;0Þdξ: 0 Amiet'smethod[27]isbasedontheiterativeuseofthistheoremtodeterminetheunsteadyliftduetoanincidentgust, each iteration accounting for the contribution of one edge. The impingement of the incident gust at leadingedge is first interpreted as a problem of wave scattering by the edge of a rigid half-plane. A zero-order disturbance potential which wouldcancelthenormalvelocityw overtheentireplaney ¼0isintroducedasinitialsolution[28].Thenthedominant 3 leading-edge scattering is derived by adding a first-order potential ensuring the condition of no flow across the surface ðy ¼0;y′ 40Þ,andcancelingtheinitialpotentialonðy ¼0;y′ o0Þ.ThisstepisachievedbySchwarzschild'stheorem,and 3 1 3 1 the resulting first approximation of the solution Φ ðy′n;0Þ yields the corresponding lift or pressure-jump surface density, 1 1 expressedas ℓ~1(cid:11)k′1n;k′2n(cid:12)¼q(cid:2)ffiπ2ffiffiðρffiffikffi0ffi′ffiUnffiffiffiþ1ffiffiffiwffiβffiffi20ffiffiffiκeffiffiÞiffiπyffiffi=ffi′ffi4nffiffie(cid:2)iðμM1(cid:2)κÞy′1neik′2ny′2ne(cid:2)iωt: (10) 1 1 1 Thisquantityistwicethedisturbancepressure,sincethepressurefluctuationshaveoppositephasesonbothsides.Ina secondstepthesolutioniscorrectedbyasecond-ordertermℓ~ whichcancelsℓ~ atthetrailing-edgeandbeyondinorderto 2 1 fulfillaperfectKuttacondition.ThecorrectionisderivedbywritingdownanotherSchwarzschild'sproblemforthepressure jumponthehalf-planeðy ¼0;y 4cÞ,acceptingsomeapproximationintheintegral[28],as 3 1 ℓ~2(cid:11)k′1n;k′2n(cid:12)¼q2ρffi2ffi0ffiπffiUffiffiðffikffi1ffiffiw′ffinffiffiþffi0ffiffieffiffiβiffiπffi2ffi=ffiκffi4ffiffiÞffi(cid:6)(cid:7)1(cid:2)ð1þiÞEn(cid:7)2κ(cid:3)y′1n(cid:2)2(cid:4)(cid:8)(cid:8)e(cid:2)iðμM1(cid:2)κÞy′1neik′2ny′2ne(cid:2)iωt; (11) 1 1 EbeingtheFresnelintegralintroducedbyAmiet Z x eiξ EðxÞ¼ pffiffiffiffiffiffiffiffidξ 0 2πξ and the asterisk denoting the complex conjugate, with the property that Eð(cid:2)xÞ¼iEnðxÞ and Enð(cid:2)xÞ¼(cid:2)iEðxÞ. The total aerodynamicresponseoftheairfoilisgivenbyℓ~¼ℓ~ þℓ~ .ItmustbenotedthatEqs.(10)and(11)havebeenfirstderivedby 1 2 AdamczykusingtheWiener–Hopftechnique[29].Theyholdforsupercriticalgustssuchthatκ240.Thecaseofthesub-critical pffiffiffiffiffiffiffiffiffiffi gustsiseasilyfoundbyusingthemodifiedvalueiκ′¼i (cid:2)κ2insteadofκ,andreplacingthesquarebracketinvolvingtheFresnel integralEnbytheterm1(cid:2)erfð½2κ′ð1(cid:2)y′nÞ(cid:4)1=2Þinvolvingtheerrorfunction.Thesimplifiedexpressionsforobliquegustsimpinging 1 on an unswept airfoil are simply obtained by considering zero sweep ψ¼0. They are found equivalently byMishandDevenport[30],Moreauetal.[31]andRoger[32].Thecompletesolutionisnotsensitivetotheexactbehaviorof the correction ℓ~ far upstream from the trailing edge, where the lift is dominated by the leading-edge inverse square-root 2 qffiffiffiffiffiffi singularity.Forabettertwo-dimensionalrepresentationoftheliftdistributionovertheairfoil,thequantityℓ~ y′n referredtoas 1 the‘regularizedlift’willbechosensubsequently. Sub-criticalgustsarecharacterizedbyafasterdropoftheunsteadyliftdownstreamfromtheleadingedgebecauseofthe factore(cid:2)κ′y′1n.Theyalsoradiatelessefficientlyforspanwise-distributedsourcesandtheiractualcontributioninvortex–airfoil interactionnoiseisapointofinterest.InthetestcaseofFig.4thedominanthumpofthefunctionpreciselyenterstherange of sub-critical gusts. Furthermore gust–airfoil interactions at relatively high frequencies take place well beyond the maximum energy of the wavenumber spectrum. This is expected for instance for most combination tones produced bytip–vortexinteractionsonCRORs. 4.2. Bladeresponsewithouttipcorrection–zerosweep The unsteady lift locally induced on an airfoil of arbitrary large span and zero sweep by an incident Oseen vortex is shown in Fig. 6 for both the supercritical and sub-critical gusts as well as their combination. Sub-critical gusts appear to contribute substantially more than supercritical gusts. Both sets produce extended traces when separated whereas theircombinedeffectresultsinamoreconcentratedtracefeaturinganupwash–downwashpattern,atleastaslongasthe
Description: