Astronomy&Astrophysicsmanuscriptno.rgbpaper˙completed (cid:13)c ESO2014 January14,2014 On the relation between metallicity and RGB color in HST/ACS data D.Streich1,R.S.deJong1,J.Bailin2,P.Goudfrooij3,D.Radburn-Smith4,andM.Vlajic1 1 Leibniz-Institutfu¨rAstrophysikPotsdam(AIP),AnderSternwarte16,14482Potsdam,Germany,e-mail:[email protected] 2 DepartmentofPhysics&Astronomy,UniversityofAlabama,Box870324,Tuscaloosa,AL35487,USA 3 SpaceTelescopeScienceInstitute,3700SanMartinDrive,Baltimore,MD21218,USA 4 DepartmentofAstronomy,UniversityofWashington,Box351580,Seattle,WA98195,USA Received.../Accepted... ABSTRACT 4 Context.Thedeterminationofstellarmetallicityanditsgradientinexternalgalaxiesisadifficulttask,butcrucialfortheunderstanding 1 ofgalaxyformationandevolution. 0 Aims.ThecoloroftheRedGiantBranch(RGB)canbeusedtodeterminemetallicitiesofstellarpopulationsthathaveonlyshallow 2 photometry.WewillquantifytherelationbetweenmetallicityandcolorinthewidelyusedHSTACSfiltersF606WandF814W. n Methods.WeuseasampleofglobularclustersfromtheACSGlobularClusterSurveyandmeasuretheirRGBcoloratgivenabsolute a magnitudestoderivethecolor-metallicityrelation.Weespeciallyinvestigatethescatterandtheuncertaintiesinthisrelationandshow J itslimitations. 3 Results.ThereisaclearrelationbetweenmetallicityandRGBcolor.Acomparisonwithisochronesshowsreasonablygoodagreement withBaSTImodels,asmalloffsettoDartmouthmodels,andalargeroffsettoPaduamodels. 1 Conclusions.Evenforthebestglobularclusterdataavailable,themetallicityofasimplestellarpopulationcanbedeterminedfrom theRGBaloneonlywithanaccuracyof0.3dexfor[M/H](cid:46) −1,and0.15dexfor[M/H](cid:38) −1.Formixedpopulations,astheyare ] A observedinexternalgalaxies,theuncertaintieswillbeevenlargerduetouncertaintiesinextinction,age,etc.Thereforecautionis necessarywheninterpretingphotometricmetallicities. G . Keywords.Galaxy:globularclusters:general-Stars:RGB-Galaxies:stellarcontent h p - o 1. Introduction Furthermore,anobservationalrelationforthewidelyusedHST r ACS filters F606W-F814W is still missing in the literature1. t Measuring the metallicity and its gradients in galaxies is a key s Hereweaimtoaddresstheseshortcomings. a issueforunderstandinggalaxyformationandevolution. Thispaperisorganizedasfollows:Afteranintroductionto [ OutsidetheLocalGroup,spectroscopicmetallicitydetermi- the data and isochrones we use in chapter 2, an observational nation of (resolved) stars is not feasible at the moment, except 1 color metallicity relation is derived in chapter 3. A discussion v forthefewverybrightsupergiants(Kudritzkietal.2012).Atthe andsummaryfollowinchapters4and5. 7 same time, the number of available color magnitude diagrams 4 (CMDs) of nearby galaxies is increasing rapidly, e.g. from the 8 GHOSTS(Radburn-Smithetal.2011)andANGST(Dalcanton 2. DataandIsochrones 2 etal.2009)surveys.TheseCMDscanbeusedtoderivemetal- 1. licities. Inthisworkweusethedataof71globularclustersobservedas 0 The color of the red giant branch (RGB) has long been partoftheACSGlobularClusterSurvey(ACSGCS;Sarajedini 4 known to depend on the metallicity (Hoyle & Schwarzschild etal.2007)anditsextension(Dotteretal.2011).Thesedatacon- 1 1955;Sandage&Smith1966;Demarqueetal.1982).Thishas tainphotometryintheF606WandF814Wfiltersandispublicly v: been extensively used to measure metallicities of old popula- available at the homepage of the ACSGCS team2. For the de- i tions. termination of photometric uncertainties and completeness, the X There are many ways to convert the color to a metallicity: resultsfromartificialstartestsarealsoavailable.Adetailedde- r someauthorsdefineindicesofanobservedpopulation,e.g.the scriptionofthedatareductionisgiveninAndersonetal.(2008). a coloroftheRGBatagivenmagnitudeortheslopeoftheRGB, Tocomparethedifferentclusters,itisnecessarytotransform (as defined for example in Da Costa & Armandroff 1990; Lee the apparent magnitudes into absolute, reddening-free magni- etal.1993;Savianeetal.2000;Valentietal.2004),whileothers tudes. For this purpose, we use the distance modulus and color measured metallicities on a star by star basis by interpolating excess from the GC database of W. Harris (Harris 1996, 2010) between either globular cluster fiducial lines (e.g. Tanaka et al. and the extinction ratios for the ACS filters given by Sirianni 2010; Tiede et al. 2004) or analytic RGB functions (calibrated et al. (2005, Table 14). Metallicities, metallicity uncertainties withglobularclusterdata,e.g. Zoccalietal.2003;Gullieuszik and α-abundances are taken from Carretta et al. (2009, 2010), et al. 2007; Held et al. 2010) or stellar evolution models (e.g. ifnotstatedotherwise. Richardson et al. 2009; Babusiaux et al. 2005), and therefore generatingmetallicitydistributionfunctionsforapopulation. 1 Momanyetal.(2005)actuallyhavefoundsucharelation,butthey Uncertaintiesthatarisefromaspecificcalibrationoragiven usedonlythreeclustersanddidnotpublishthedetails. isochrone or cluster template set are typically not well studied. 2 http://www.astro.ufl.edu/˜ata/public_hstgc/ 1 D.Streichetal.:OntherelationbetweenmetallicityandRGBcolorinHST/ACSdata InordertomeasurethecoloroftheclustersRGBstheymust 3.2. Metallicitydetermination have a sufficient number of stars in the RGB region. We se- The iron abundance [Fe/H] is often used synonymously with lected therefore only those clusters for our study, which have more than five stars brighter than M = −2 and least one metallicity.However,fromthetheoreticalpointofviewofstellar star brighter than M = −3. A Fli8s1t4Wof the clusters used is evolution,allelementsareimportantindeterminingtheproper- F814W ties of stellar atmospheres. Therefore the color of red giants is giveninAppendixB(TableB.1). expectedtodependontheoverallmetallicity[M/H]ratherthan Forcomparisonwiththeoreticalmodels,weusefoursetsof on [Fe/H]. Unfortunately, there are very few measurements of isochrones: the new PARSEC isochrones (Bressan et al. 2012) theabundancesofotherelementsinglobularclusters. andtheirpredecessors,the(old)Paduaisochrones3(Girardietal. We use here the abundances given in Carretta et al. (2010), 2010; Marigo et al. 2008, and references therein), the BaSTI who have measured [Fe/H] for all GCs in our sample and have isochrones4 (Pietrinferni et al. 2006, 2004) and the Dartmouth compiled[α/Fe]valuesformanyofthem.AccordingtoSalaris isochrones5(Dotteretal.2007). et al. (1993), these two measurements can be combined to get theoverallmetallicitywiththeformula 3. Results [M/H]=[Fe/H]+log (0.638∗10[α/Fe]+0.362). 10 3.1. Colormeasurement For clusters that have no individual α measurement, we had to estimateitsαabundance.Sincethespreadof[α/Fe]amongglob- We use two indices to define the color of the RGB: C = −3.0 ularclustersisrathersmall,suchanestimatewillonlyintroduce (F606W−F814W)M=−3.0andC−3.5 =(F606W−F814W)M=−3.5, small errors. In Fig. 1, [α/Fe] is plotted against [Fe/H], where i.e.thecoloroftheRGBatanabsoluteF814Wmagnitudeof- wehaveassumedanuncertaintyof0.05intheαabundance.The 3.0and-3.5,respectively(seeFig.A.1forsometypicalCMDs). straightlineisalinearregression,whichweusefortheestima- EquivalentindicesfortheJohnson-Cousinsfiltersystemwereal- tionof[α/Fe],whereitisnotavailable.Thescatteraroundthis readyusedbyDaCosta&Armandroff(1990),Leeetal.(1993) regressionlineis0.1dex,whichweadoptastheindividualun- and also by Saviane et al. (2000). These indices have the ad- certaintyintheestimated[α/Fe]. vantage of only depending on relatively bright stars and can thereforebemeasuredindistantgalaxies,aswell.Weusealsoa thirdindex,theS-index,whichistheslopeoftheRGB(Saviane et al. 2000; Hartwick 1968). This slope is measured between twopointsoftheRGB,oneatthelevelofthehorizontalbranch and the other two magnitudes brighter. While this index needs deeper data, and therefore its usage in extragalactic systems is limited,ithastheadvantageofbeingindependentofextinction anddistanceerrors. In order to provide a robust measurement of the color at a given magnitude we interpolated the RGB with a hyperbola of theform: M =a+b·color+c/(color+d) Such a function was already used by Saviane et al. (2000) to findaone-parameterrepresentationoftheRGB;theydefinedthe parameters a, b, c, and d as a quadratic function of metallicity. Here, we are only interested in a good interpolation in sparse parts of the RGB and can therefore use a, b, c, and d as free parametersforeachcluster.Inordertoreduceproblemsdueto Fig.1.Alphaabundanceasafunction of[Fe/H]forallclusters contamination,wedefinearegionofprobableRGBstars,which alsoexcludesthehorizontalbranch/redclumppartoftheCMD. in Carretta et al. (2010). The text in the lower left corner gives Notethatwefitthecurvedirectlytothecolor/magnitudepoints theformulaoftheregressionlineandthescatteraroundthisline. We used these for estimating the [α/Fe] and its uncertainty for of the stars and not to the ridge line of the RGB (in contrast clusterswithoutindividualalphameasurement. to Saviane et al. 2000). More details of the fitting process and someexampleplotswiththeexclusionregionareshowninthe Appendix. To calculate the S-index, we first determined the horizon- 3.3. Uncertainties talbranchmagnitudeofeachsystembyvisualinspectionofthe associatedCMDs.ThiswastypicallyF606W≈0.40mag,witha To determine the uncertainties of our color measurements, we 1-sigma variation of 0.10mag. We measured the color at this performedabootstrapanalysis.Theuncertaintyinthefitisde- magnitude (and at 2 magnitudes brighter) from the fitted RGB rivedbyfittingtheRGBof500samplesthataredrawnrandomly usedpreviously,andcalculatedtheS-indexastheslopebetween fromtheoriginaldata.Eachre-samplehasthesamenumberof thesepoints starsastheoriginalsample,butmaycontainsomestarsmultiple timeswhileothersareabsent. 3 http://stev.oapd.inaf.it/cgi-bin/cmd We also incorporated in the bootstraps a shift due to the 4 http://albione.oa-teramo.inaf.it/ uncertainties in extinction and distance. According to Harris 5 http://stellar.dartmouth.edu/˜models/index.html (2010),theuncertaintyinextinctionisoftheorder10%inE(B- 2 D.Streichetal.:OntherelationbetweenmetallicityandRGBcolorinHST/ACSdata V), but is at least 0.01mag, while the uncertainty in distance modulusis0.1mag. Theuncertaintyindistanceisimportantbecausewemeasure thecoloratagivenabsolutemagnitude.Thisisparticularlysig- nificant for the metal-rich clusters where the color of the RGB is strongly dependent on magnitude, as opposed to metal-poor clusterswheretheRGBisnearlyverticalonaCMD.Theresult- inguncertaintyinC rangesfromapproximately0.01magat −3.5 [M/H]=-2toapproximately0.1magat[M/H]=-0.2. The uncertainties in the metallicity are the sum of the un- certainties in [Fe/H] Carretta et al. (as given by 2009), and in [α/Fe], which we adopt as 0.05dex for clusters with individual alpha-abundancemeasurementsand0.1dexforclusterswithes- timatedvalues. 3.4. Colormetallicityrelation Usingthecolorsandmetallicitiesdescribedabove,wecannow lookatthecolor-metallicityrelations. The results are shown in Fig. 2. There is a clear relation between RGB color and spectroscopic metallicity. This rela- tioncanbeparametrizedwiththefunctionF606W −F814W = a exp([M/H]/a ) + a . Using the orthogonal distance regres- 0 1 2 sion (ODR) algorithm (Boggs et al. 1987, 1992)6, we deter- Fig.3. top panel: The RGB slope as a function of metallicity. minedthethreeparameters,thatareshowninTable1.TheODR Thesolidblacklineisthebest-fitquadraticfunction,asgivenin uses the uncertainties on both variables to determine the best the equation in the bottom left. Grey lines give the 1σ, 2σ and fit.Hence,boththeuncertaintiesincolorandmetallicity,asde- 3σconfidencerangesofthethebestfitrelation.Bottompanel: scribedabove,areconsideredduringthefitandtheireffectsare weighted orthogonal residuals, i.e. the orthogonal distances to includedinthefinaluncertaintiesoftheresultingfitparameters. thebestfitlinedividedbytherespectiveuncertainties. The residual varinaces for both relations are σ2 < 1, so the res adopteduncertaintiescanexplaintheobservedscatterinthere- lations. intheresiduals.Moreover,thevarianceoftheresidualsisonly σ2 = 1.17, i.e. the residuals are only slightly larger than ex- res pectedfromtheindividualmeasurementuncertainties.Themax- Table 1. Fit parameters of the color–metallicity relations. imum of the parabola is at [M/H]=-2.14, which is beyond the For C and C the relation is exponential: C = −3.5 −3.0 i metallicityrangeoftheobservedclusters. a exp([M/H]/a ) + a , for the S-index it is linear S = a + 0 1 2 0 a [M/H]. 1 4. Discussion a a a 0 1 2 C 0.95±0.11 0.602±0.069 0.920±0.015 4.1. Analyzingresiduals −3.5 C−3.0 0.567±0.056 0.75±0.12 0.845±0.018 We examine the residuals to look for a possible second pa- S-index 3.67±0.76 −9.3±1.2 −2.08±0.44 rameter that influences the color or slope of the RGB and could produce some scatter in a simple color-metallicity rela- tion. Figures 4 and 5 show the residuals of the fit of the color- metallicityrelation,thatisshowninFig.2,andFigures6and7 the residuals of the fit to the slope metallicity relation, that is 3.5. TheS-index showninFig.3. The slope of the RGB as a function of metallicity can be seen Theresidualsasafunctionofmetallicity,[Fe/H]and[α/Fe], inFig.3.ThereporteduncertaintiesoftheS-indexareacombi- areshowninFig.4andFig.6.Thereisnotrendwithanyofthese nation of the uncertainties of the RGB fit (determined through parameters,neitherinthecolor-norslope-metallicityrelations. a bootstrap analysis as described above) and the uncertainty Fromtheoreticalstudies,theageisknowntohaveaneffect in the determination of the HB level, which we set here to on the color of the RGB. In fact, a weak trend of the residu- σ =0.1mag. als with age can be seen in Figure 5 (upper panel), with older HBmag As expected, the slope of the RGB gets smaller with in- clusters being slightly redder than younger clusters. The slope creasing metallicity, while at the low-metallicity end the RGB oftheregressionlinesshownthereis1.94±2.13forC and −3.5 slope is insensitive to metallicity. We have fitted a quadratic 3.00±1.85forC ,whichmakesthetrendsignificantforthe −3.0 functiontothedata,whichisshowninFig.3togetherwiththe C index.InordertoquantifytheeffectsofageontheCMD, −3.0 associated best-fit parameters. The choice of a quadratic func- weanalysetheresidualsincolorspace7 inFigure8.Assuming tion for the fit proves to be appropriate as no trends are seen atypicalageforglobularclustersof12.8Gyr(asMar´ın-Franch etal.(2009)dousingtheisochronesofDotteretal.(2007))we 6 We used the Python implementation of this algorithm that is part of the Scipy library: http://docs.scipy.org/doc/scipy/ 7 i.e.weignoreuncertaintiesinmetallicityandonlylookatthecolor reference/odr.html offsetbetweenthedataandthebestfitrelation 3 D.Streichetal.:OntherelationbetweenmetallicityandRGBcolorinHST/ACSdata Fig.2. Color of the RGB as function of metallicity, based on the fitted RGBs. Black circles are for the color at M = −3.5, F814W orangediamondsfor M = −3.0.Smallpointsareforclusterswithoutindividualalphameasurements.Thesolidlinesarethe F814W best-fittingfunctionsasgivenintheupperleftcornerandthelightercontoursshowthe1σ,2σand3σregionsofthefit. can transform the slopes of the regression lines in Figure 8 to but this effect is relatively small. An age difference of 5Gyr actual color changes. These are 0.0062 ± 0.0041mag/Gyr for causes the same color difference as a metallicity difference of C and0.0078±0.0026mag/GyrforC .Whilethisisavery only 0.1dex (see Fig. 9, top row). At a given total metallicity −3.5 −3.0 small effect for the age range observed in our globular clusters [M/H],theα-abundancehasalmostnoeffectontheRGBcolor (10Gyrto14Gyr),itcanmakesignificantdifferenceswhenex- (Fig.9,middlerow).Thissupportstheassumptionthatthecolor trapolated toyoungerpopulations; e.g.an 8Gyrold population oftheRGBismainlyinfluencedby[M/H]andnot[Fe/H]. wouldbebluerthanpredictedbyourrelationbyabout0.03mag. TheincreasingcurvatureoftheRGBwithincreasingmetal- NotealsothattheSindexdoesnotshowanysystematictrends licitypreventstheRGBofsomemetalrichclustersfromreach- withage. ingF814W=−3.5mag,butbenddownatfaintermagnitudes.In To test for problems with the extinction values, we looked the Dartmouth models this applies for isochrones with [M/H]> for trends with E(B-V) and galactic latitude (Fig. 5 and Fig. 7, −0.4,inPaduamodelsisochroneswith[M/H]> −0.3.However, middleandlowerpanel).Wedonotfindanysystematicshere. the BaSTI RGB isochrones all reach F814W= −3.5mag, even at super-solar metallicities. Among our clusters, NGC6838 ([M/H]= −0.53; it also has very few stars in the RGB) and 4.2. Comparison NGC6441([M/H]=−0.29)areaffectedbythis. Wecancompareourrelationstothosederivedfromstellarevo- Inordertoquantifytheagreementbetweenourrelationsand lution models, and to relations from ground-based data trans- other relations, we have performed a Monte Carlo resampling formedtotheHST/ACSfiltersystems. of our relations by drawing random parameter sets ai from a For comparison with theoretical relations, we use the multivariateGaussiandistributionwiththemeanandcovariance isochronesetfromthePadua,DartmouthandBaSTIgroups.For matrix as given by the best fit. The 68.3%, 95.5%, and 99.7% allisochronesetsweusedagesof8Gyr,10Gyrand13Gyr.For confidenceintervalareshownascontoursinFigures2,3,9,and Dartmouth, we use α-enhancements of [α/Fe] = {0.0,0.2,0.4} 10. and for BaSTI models [α/Fe] = {0.0,0.4}. The PARSEC8 and AscanbeseeninFigures9and10,BaSTIisochronesshow Padua isochrones are available only with solar scaled abun- goodagreementwithourobservationalresult.Atmostmetallici- dances. tiestheα-enhancedBaSTIisochronefallswithinthethe1σcon- Alltheseisochronesetsshowaqualitativelysimilarbehav- fidencerangeofourobservationalrelation;onlyfor[M/H]>-0.4 ior. The RGB gets redder (Fig. 9) and shallower (Fig. 10) with aretheisochronessignificantlyredder(>3σ)andshallowerthan increasingmetallicity.AhigheragealsoleadstoaredderRGB, our relation. The Dartmouth isochrones agree well at very low metallicities,buttendtopredictslightlyreddercolorsandshal- 8 Actually, Bressan et al. (2012) write about α-enhanced PARSEC lowerslopesatintermediateandhighermetallicities.Incontrast, isochrones,butthesearenot(yet)publiclyavailable. resultsfromthePaduaisochronesarebluerbyalmost0.15mag 4 D.Streichetal.:OntherelationbetweenmetallicityandRGBcolorinHST/ACSdata Fig.9.Comparisonofcolor-metallicityrelationswiththeoreticalisochronesofdifferentage(toprow)anddifferentα-enhancement (middle row) and transformed (V-I) relations (bottom row). Left panels compare the relations at F814W = −3.5, right panels at F814W =−3.0.The(V-I)relationsaretakenfromSavianeetal.(2000,S+00),Leeetal.(1993,L+93)andDaCosta&Armandroff (1990,DA90).TheS+00relationsaregivenontwometallicityscales:theZWscale(Zinn&West1984)andtheCGscale(Carretta & Gratton 1997). The gray contours show the 1σ, 2σ, and 3σ confidence levels of the fit. The two lines for the observational relationsareduetodifferencesbetweentheobservationalandsynthetictransformationsfromSiriannietal.(2005). and much steeper at lower metallicities, and redder and shal- beenknowntoleadtohighermetallicityestimates,whenPadua lower at the high metallicity end. Determining the reason for isochronesareused(Lejeune&Buser1999). thisoffsetisbeyondthescopeofthispaper,butthisproblemhas 5 D.Streichetal.:OntherelationbetweenmetallicityandRGBcolorinHST/ACSdata Fig.4. Residuals of the fit of the color-metallicity relation as Fig.5. Residuals of the fit of the color-metallicity relation as function of metallicity (upper panel), iron abundance (middle functionofage(upperpanel,Mar´ın-Franchetal.2009),extinc- panel)andalphaenhancement(lowerpanel).Symbolsandcol- tion(middlepanel)andgalacticlatitude(lowerpanel).Symbols orsareasinFig.2. andcolorsareasinFig.2. Existing color-metallicity relations are given in the standard Johnson-Cousin filters. Thus to compare these with our anal- Notethatthesetwotransformationshavearelativeoffsetof ysis we use the transformations to the HST/ACS filter set de- ofabout0.05mag,whichcanbeseeninFig.9asthetwoalmost scribed in Sirianni et al. (2005). Two such transformations are parallellinesinthelowerpanel.9 provided,oneobservationallybasedandtheothersynthetic.The From Fig. 9 it can be seen that these transformed relations formerusesobservationsofhorizontalbranchandRGBstarsin are always bluer at the low metallicity end and have a steeper themetal-poor([Fe/H]=−2.15)globularclusterNGC2419.This slopethanourrelations.10 clusterdoesnotcontainstarswith(V−I)>1.3,hencethetrans- Part of this discrepancy can be explained by the different formationatthesereddercolorsareextrapolatedandshouldbe metallicity scales used for the various relations. While we use usedwithcaution.Thetransformationis: themetallicityscaleofCarrettaetal.(2009,,C+09),earlierre- lationsweredeterminedeitherintheZinn&Westscale(Zinn& F606W−F814W =−0.055+0.762(V−I) West 1984, ZW84) or the Carretta & Gratton scale (Carretta & Gratton1997,CG97).TheadoptedC+09scaleiscomparableto For the synthetic transformation, stellar models with (V − the ZW84 scale; however, the CG97 scale yields higher metal- I) < 1.8 were used. Hence, for redder colors, the extrapolation licities for [Fe/H](cid:46) −1 and lower metallicities for [Fe/H](cid:38) −1 shouldagainbetreatedwithcaution.Thetransformationisgiven (see11). as: 9 TheoffsetcanalreadybeseeninSiriannietal.(2005,Fig.21)as anoffsetinplotof(V-I)versusV-F606W. F606W−F814W =0.062+0.646(V−I)+0.053(V−I)2 10 Strictly speaking, we compare slightly different things here: The transformedrelationsmeasurethecoloratconstantI-bandmagnitude, whileinthisworkwehavemeasuredthecoloratconstantF814Wmag- We use both these transformations on the color-metallicity nitude. We can ignore this difference here because the difference be- relationsof Savianeet al.(2000),who determinedrelations for tween I-band and F814W is small. According to the transformations the indices (V − I)−3.0 and (V − I)−3.5, and for Da Costa & givenabove,thedifferencesbetweenF814WandIarealwayssmaller Armandroff (1990, for (V − I) ) and Lee et al. (1993, for −3.0 than0.05magandtheresultingerrorinthecolormeasurementofthe (V − I)−3.5). To shift these transformations, which are defined RGBisalwayssmallerthan0.01mag(exceptforthetworeddestclus- for[Fe/H],tothe[M/H]scale,weusedthesame[Fe/H]-[α/Fe] ters,forwhichitcanreach0.06mag).Thereforetheeffectonthetotal relationasforthedata. color-metallicityrelationisnegligible. 6 D.Streichetal.:OntherelationbetweenmetallicityandRGBcolorinHST/ACSdata Fig.6. Residuals of the fit of the slope-metallicity relation as Fig.7. Residuals of the fit of the slope-metallicity relation as function of metallicity (upper panel), iron abundance (middle functionofage(upperpanel,Mar´ın-Franchetal.2009),extinc- panel)andalphaenhancement(lowerpanel). tion(middlepanel)andgalacticlatitude(lowerpanel). Hence, using the CG97 scale will lead to a steeper color- metallicty relation than found from our measurements (see the bottompanelofFig.9). 4.3. Invertingtherelation Themainpurposeofthecolormetallicityrelationistoestimate metallicities of old stellar population. The uncertainties arising from the inverted relation are highly nonlinear. In Fig. 12 we plot the difference between the spectroscopic metallicities and themetallicitiesderivedwithourrelation.Itisapparentthatfor bluer colors (i.e. lower metallicities) the difference can be very large.Ifthecolorisnearthepoleofthemetallicity-colorfunc- tion, the formal uncertainties can be infinite. Then only an up- perlimitonthemetallicitycanbederived.Forallclusterswith C < 1.2(orC < 1.0)thescatterinthemetallicitydiffer- −3.5 −3.0 encesisabout0.3dex.Wesuggestusingthisasaminimumun- certaintyformetallicitiesderivedfromourrelationinthatcolor Fig.8.Colorresidualsofthefitofthecolor-metallicityrelation range.Forreddercolors,theuncertaintydropsinhalf. as function of age. The text gives the regression line formulas forbothindices. 5. Conclusionsandsummary In this paper, we derived relations between the colors and the Therefore, inverting the relation in this regime introduces slopeoftheRGBandmetallicityusingdatafromglobularclus- largeuncertainties.Thismakesaphotometricmetallicityde- ters. The details of the relations are summarized in Table 1. terminationratherinaccurateinthismetallicityrange. When using these relations for determining metallicities of old – Our relation agrees well with the prediction from BaSTI resolvedstellarpopulations,thefollowingpointsshouldbekept isochrones.Dartmouthisochronesareslightlyredder,Padua inmind: isochronesbluerthanourdata.Thus,forthepurposeofde- – The color changes very little with metallicity for [M/H] (cid:46) terminingmetallicitiesofoldpopulationswerecommendthe −1.0, the slope changes little below [M/H] (cid:46) −1.5. useofBaSTIisochrones. 7 D.Streichetal.:OntherelationbetweenmetallicityandRGBcolorinHST/ACSdata Fig.12.Errordistributionofthemetallicitydeterminationusing theinvertedcolormetallicityrelations.Lineswitherrorbarsare Fig.10.ComparisonoftheobservedS-indexmetallicityrelation the running mean and standard deviation which are computed withisochronesofvaryingage.Thegraycontoursshowthe1σ, using a bin width of 0.3mag for C and 0.15mag for C . 2σ,and3σconfidencelevelsofthefit. SymbolsandcolorsareasinFig.2.−N3.5otethedifferentscales−3o.0n thex-axisforthetwodistributions. References Anderson,J.,Sarajedini,A.,Bedin,L.R.,etal.2008,AJ,135,2055 Babusiaux,C.,Gilmore,G.,&Irwin,M.2005,MNRAS,359,985 Bellini,A.,Piotto,G.,Milone,A.P.,etal.2013,ApJ,765,32 Boggs, P. T., Byrd, R. H., Rogers, J. E., & Schnabel, R. B. 1992, User’s Reference Guide for ODRPACK Version 2.01 Software for WeightedOrthogonalDistanceRegression,U.S.DepartmentofCommerce, TechnologyAdministration,NationalInstituteofStandardsandTechnology Boggs,P.T.,Byrd,R.H.,&Schnabel,R.B.1987,SIAMJournalonScientific andStatisticalComputing,8,1052 Bressan,A.,Marigo,P.,Girardi,L.,etal.2012,MNRAS,427,127 Carretta,E.,Bragaglia,A.,Gratton,R.,D’Orazi,V.,&Lucatello,S.2009,A&A, 508,695 Carretta,E.,Bragaglia,A.,Gratton,R.G.,etal.2010,A&A,516,A55 Carretta,E.&Gratton,R.G.1997,A&AS,121,95 DaCosta,G.S.&Armandroff,T.E.1990,AJ,100,162 Dalcanton,J.J.,Williams,B.F.,Seth,A.C.,etal.2009,ApJS,183,67 Demarque,P.,King,C.R.,&Diaz,A.1982,ApJ,259,154 Dotter,A.,Chaboyer,B.,Jevremovic´,D.,etal.2007,AJ,134,376 Fig.11.Comparisonofdifferentmetallicityscales.Onthex-axis Dotter,A.,Sarajedini,A.,&Anderson,J.2011,ApJ,738,74 the C+09 scale, that is adopted in this paper, is shown. Blue Girardi,L.,Williams,B.F.,Gilbert,K.M.,etal.2010,ApJ,724,1030 crosses show the clusters from Carretta & Gratton (1997), red Gullieuszik,M.,Held,E.V.,Rizzi,L.,etal.2007,A&A,467,1025 crosses from Zinn & West (1984). The plus symbols show the Harris,W.E.1996,AJ,112,1487 Harris,W.E.2010,ArXive-prints,1012,3224 metallicities determined in Rutledge et al. (1997, RHS) based Hartwick,F.D.A.1968,ApJ,154,475 ontheCatriplet,calibratedtobothscales. Held,E.V.,Gullieuszik,M.,Rizzi,L.,etal.2010,MNRAS,404,1475 Hoyle,F.&Schwarzschild,M.1955,ApJS,2,1 Kudritzki,R.-P.,Urbaneja,M.A.,Gazak,Z.,etal.2012,ApJ,747,15 Lee,M.G.,Freedman,W.L.,&Madore,B.F.1993,ApJ,417,553 Lejeune,T.&Buser,R.1999,inAstronomicalSocietyofthePacificConference – Acomparisonwithothercolor-metallicity-relationsfromthe Series, Vol. 192, Spectrophotometric Dating of Stars and Galaxies, ed. literature,bothempiricalandtheoretical,showssomescatter I.Hubeny,S.Heap,&R.Cornett,211 betweentheserelations.Thereforeacomparisonofmetallic- Marigo,P.,Girardi,L.,Bressan,A.,etal.2008,A&A,482,883 itiesderivedfromdifferentmethods/relationswillintroduce Mar´ın-Franch,A.,Aparicio,A.,Piotto,G.,etal.2009,ApJ,694,1498 systematicoffsets.Thisshouldbekeptinmindwheneverthe Momany,Y.,Held,E.V.,Saviane,I.,etal.2005,A&A,439,111 Pietrinferni,A.,Cassisi,S.,Salaris,M.,&Castelli,F.2004,ApJ,612,168 useofahomogenousmethodisnotpossible. Pietrinferni,A.,Cassisi,S.,Salaris,M.,&Castelli,F.2006,ApJ,642,797 Radburn-Smith,D.J.,deJong,R.S.,Seth,A.C.,etal.2011,ApJS,195,18 Richardson,J.C.,Ferguson,A.M.N.,Mackey,A.D.,etal.2009,MNRAS,396, Acknowledgements. Wethankourreferee,IvoSaviane,forthecarefulreading 1842 ofourmanuscript,thedetailedlookintothedata,andthecommentsthathelped Rutledge,G.A.,Hesser,J.E.,&Stetson,P.B.1997,PASP,109,907 toimprovethispaper.WealsothankBenneHolwerdaandAntonelaMonachesi Salaris,M.,Chieffi,A.,&Straniero,O.1993,ApJ,414,580 for their comments on an earlier version of this paper that improved its final Sandage,A.&Smith,L.L.1966,ApJ,144,886 quality. Sarajedini,A.,Bedin,L.R.,Chaboyer,B.,etal.2007,AJ,133,1658 DSgratefullyacknowledgesthesupportfromDLRviagrant50OR1012and Saviane,I.,Rosenberg,A.,Piotto,G.,&Aparicio,A.2000,A&A,355,966 ascholarshipfromtheCusanuswerk. Sirianni,M.,Jee,M.J.,Ben´ıtez,N.,etal.2005,PASP,117,1049 8 D.Streichetal.:OntherelationbetweenmetallicityandRGBcolorinHST/ACSdata Tanaka,M.,Chiba,M.,Komiyama,Y.,etal.2010,ApJ,708,1168 Tiede,G.P.,Sarajedini,A.,&Barker,M.K.2004,AJ,128,224 Valenti,E.,Ferraro,F.R.,&Origlia,L.2004,MNRAS,351,1204 Zinn,R.&West,M.J.1984,ApJS,55,45 Zoccali,M.,Renzini,A.,Ortolani,S.,etal.2003,A&A,399,931 AppendixA: DescriptionofthefitoftheRGB WeparametrizedtheRGBwiththefunction M =a+b·color+c/(color+d), asgiveninSavianeetal.(2000).Sincethedatadonotonlycon- tain RGB stars, but also the horizontal branch, blue stragglers and foreground stars, we have defined a region to guarantee a high fraction of RGB stars in our fit sample. The extent of this region can be seen as the red frame in Fig. A.1. Note that this regionexcludesalsotheredclump. Insomeclusters,thereisadistinctasymptoticgiantbranch (AGB) visible, which lies on the blue side of the RGB (it is mostly seen at F814W magnitudes between -1 and -2). As in Saviane et al. (2000), we have removed these AGB stars by excluding all detections that lie blue wards of a reference line with the same slope for all clusters (denoted in Figures A.1 throughA.9byadashedredline).Thehorizontalpositionofthe reference line was set to be 0.05mag blue wards (at F814W=- 0.5)ofafirstfitofallstarsintheRGBregionandthenexcluding. ThefitincludingallstarsisshownintheCMDsasblackdashed line,whilethefinalfitaftertheAGBremovalisshownasblack solidline. Fortheactualfitweusedthepythonpackagescipy.odr.This routine performs an orthogonal distance regression, i.e. it min- imizes the orthogonal distance between the curve and the data points.Thedistanceofeachdatapointisweightedwithitsmea- surement uncertainty. This method is a variation of the typical χ2 minimization,nowgeneralizedfordatawithuncertaintieson bothvariables. The ACSGCS team reports photometric uncertainties for eachindividualstar,whicharetypicallyquitesmall;themedian uncertainty in F814W is only 0.003mag. This is much smaller thanboththeobservedscatterintheRGBandtheerrorsthatare foundintheartificialstartestatalevelofF814W≈0.(Thereare no artificial star tests at brighter magnitudes.) The mean mea- surement error estimated from the difference of the input and recovered magnitudes in the artificial star test are 0.06mag in F814W and 0.03mag in color. These estimated are added in quadraturetothereporteduncertaintiesofeachstar.Thesmaller errorincolorisduetothefactthaterrorsinbothbandsarecor- related. Thus the uncertainty of the difference of both bands is smallerthantheuncertaintyineachband. Finally,wevisuallyinspectedeachCMDwithitsfit,tocheck for any residual problems of our clusters. After this inspection we excluded four more clusters from the sample: NGC6838 and NGC6441, because their RGB fits do not reach the M = I −3.5level;NGC6388(andagainNGC6441),becausetheirred clumpsseemtobetofaint(Bellinietal.2013,alsofoundprob- lems with differential reddening and multiple populations in these two clusters); and NGC6715, because it has a clear and strongsecondRGB. AppendixB: PropertiesoftheGlobularclusters The properties of the globular clusters, from the literature and determined in this work, are summarized in Table B.1 and TableB.2respectively. 9 D.Streichetal.:OntherelationbetweenmetallicityandRGBcolorinHST/ACSdata Fig.A.1.CMDsofthe53clustersinoursample,withfittedRGBcurves.Thetwohorizontalgraylinesindicatethemagnitudesat whichthecolorsaremeasured.Theredframegivestheregionwherestarsareusedforthefit.ThereferencelinetoseparateAGB fromRGBstarsisshownasreddashedline.Thesolidblacklineshowsthebest-fitRGBfunctionaftertherejectionoftheAGB. Note,thatallstarsintheCMDareactuallydrawnwitherrorbars,butformanystarsthereportederrorsaretoosmalltobevisible intheseplots. 10