ON THE QUANTUM INVARIANT FOR THE BRIESKORN HOMOLOGY SPHERES KAZUHIROHIKAMI ABSTRACT. We study an exactasymptoticbehaviorof the Witten–Reshetikhin–TuraevSU(2) in- variantfortheBrieskornhomologyspheresΣ(p1,p2,p3)byuseofpropertiesofthemodularform followinga methodproposedbyR. LawrenceandD.Zagier. Keyobservationisthattheinvariant 5 coincides with a limiting value of the Eichler integral of the modular form with weight 3/2. We 0 show thatthe Casson invariantis related to the numberof the Eichlerintegralswhich do notvan- 0 ish in a limit τ N Z. Correspondingly there is a one-to-one correspondence between the 2 → ∈ non-vanishingEichlerintegralsandtheirreduciblerepresentationofthefundamentalgroup,andthe n Chern–Simons invariant is given from the Eichler integral in this limit. It is also shown that the a Ohtsuki invariantfollows from a nearly modular property of the Eichler integral, and we give an J explicitformintermsoftheL-function. 1 2 v 8 2 0 1. INTRODUCTION 5 0 4 The quantum invariant for the 3-manifold was introduced as a path integral on by Wit- 0 M M ten [43];as theSU(2)invariantwehave / h p - Zk( ) = exp 2πik CS(A) A (1.1) h M D t Z (cid:16) (cid:17) a wherek Z, and CS(A) istheChern–Simonsfunctionaldefined by m ∈ : 1 2 v CS(A) = Tr A dA+ A A A (1.2) i 8π2 ∧ 3 ∧ ∧ X Z (cid:18) (cid:19) M r a Sincethiswork,studiesofthequantuminvariantsofthe3-manifoldshavebeen extensivelydevel- oped, and a construction of the 3-manifold invariant was reformulated combinatorially and rigor- ously in Refs. 15,33 using a surgery description of and the colored Jones polynomial defined M inRef. 14. By applying a stationary phase approximation, an asymptotic behavior of the Witten invariant inlarge k is expectedto be[6,43](seealso Ref. 2) → ∞ 1 Zk( ) e−34πi Tα( )e−2πiIα/4e2πi(k+2)CS(A) (1.3) M ∼ 2 M α Xp Here the sum runs over a flat connection α, and T and I are the Reidemeister torsion and the α α spectral flowdefined modulo8 respectively. Date:May2,2004.AcceptedonDecember21,2004. 1 In this article we consider the Brieskorn homology spheres Σ(p ,p ,p ) where p are pairwise 1 2 3 i coprimepositiveintegers. Thisistheintersectionofthesingularcomplexsurface z p1 +z p2 +z p3 = 0 1 2 3 incomplexthree-space withtheunitfive-sphere z 2 + z 2 + z 2 = 1. ThemanifoldΣ(2,3,5) 1 2 3 | | | | | | isthePoincare´ homologysphere. Thesemanifoldshavearationalsurgery descriptionasinFig.1, and thefundamentalgroup hasthepresentation π Σ(p ,p ,p ) = x ,x ,x ,h hcenter,xpk = h−qk fork = 1,2,3,x x x = 1 (1.4) 1 1 2 3 1 2 3 k 1 2 3 D E where(cid:0)q Zsuch(cid:1)that (cid:12) k ∈ (cid:12) 3 q P k = 1 (1.5) p k k=1 X Hereand hereafter weuse P = P(p ,p ,p ) = p p p (1.6) 1 2 3 1 2 3 0 p /q p /q 1 1 3 3 p /q 2 2 Figure1: RationalsurgerydescriptionoftheBrieskornhomologysphereΣ(p1,p2,p3) AsymptoticbehaviorofthequantuminvariantforthehomologysphereswasstudiedinRefs.19, 20,22,34–39. Our purpose here is to reformulate these results number theoretically by use of propertiesofthemodularformfollowingamethodofLawrenceandZagier[23]. Akeyobservation isafactthattheWitten–Reshetikhin–Turaev(WRT)invariantfortheBrieskornhomologyspheres is regarded as a limit value of the Eichler integral of the modular form with weight 3/2 as was suggested in Ref. 23. Using a nearly modular property of the Eichler integral, we can derive an exactasymptoticbehavioroftheWRTinvariant. Correspondingly,wecanfindaninterpretationfor topological invariants such as the Chern–Simons invariant, the Casson invariant [42], the Ohtsuki invariant [27–30], and the Ray–Singer–Reidemeister torsion from the viewpoint of the modular form. Thispaperisorganizedasfollows. Insection2weconstructtheWRTinvariantfortheBrieskorn homologyspheresΣ(p ,p ,p )followingRef.22. Weuseasurgerydescriptionofthe3-manifold, 1 2 3 andapplyaformulainRef. 13. In section3 weintroducethemodularformwithweight3/2. This 2 givesa(p 1)(p 1)(p 1)/4-dimensionalrepresentationofthemodulargroupPSL(2;Z). 1 2 3 − − − We consider the Eichler integral thereof in section 4. We study a limiting value of the Eichler integral at τ Q, and showthat the numberofthe Eichlerintegralswhich havenon-zero valuein ∈ a limit τ N Z is related to the Casson invariant of the Brieskorn homology spheres. It will → ∈ be discussed that we have a one-to-one correspondence with the irreducible representation of the fundamental group, and that the Chern–Simons invariant is given from this limiting value of the Eichler integral. We further give a nearly modular property of the Eichler integral. In section 5 werevealakeyidentitythattheWRTinvariantfortheBrieskornspherescoincideswithalimiting value of the Eichler integral at τ 1/N. This was suggested in Ref. 23 where a correspondence → was proved only for a case of the Poincare´ homologysphere. Combining with results in section 4 weobtainanexactasymptoticexpansionoftheWRTinvariantwhichisconstitutedfromtwoterms; one is a sum of dominating exponential term which gives the Chern–Simons term, and another is a “tail” part which may be regarded as a contribution from a trivial connection. In section 6 we provethat theS-matrixof themodulartransformationgivesboththeReidemeistertorsionand the spectralflow. Weshowinsection7thatatailpartgivestheOhtsukiinvariant. Explicitlycomputed is the n-th Ohtsuki invariant in terms of the L-function. The last section is devoted to concluding remarks. 2. THE WITTEN–RESHETIKHIN–TURAEV INVARIANT FOR THE BRIESKORN HOMOLOGY SPHERES We introducethe Reshetikhin–Turaevinvariant τ ( ) [33] for N Z . This is related to the N + M ∈ WitteninvariantZ ( ) defined ineq. (1.1)as k M τ ( ) Z ( ) = k+2 M (2.1) k M τ (S2 S1) k+2 × Heretheinvariantisnormalizedto be τ (S3) = 1 N and wehave N 1 τ (S2 S1) = N × 2 sin(π/N) r Whenthe3-manifold isconstructedbytherationalsurgeriesp /q onthej-thcomponentof j j M n-componentlink ,it was shown[13,33]thattheinvariantτ ( )isgivenby N L M N−1 n τN(M) = eπ4iNN−2( nj=1Φ(U(pj,qj))−3sign(L)) Jk1,...,kn(L) ρ(U(pj,qj))kj,1 (2.2) P k1,.X..,kn=1 Yj=1 3 Herethesurgery p /q isdescribed by anSL(2;Z) matrix j j p r U(pj,qj) = j j q s j j (cid:18) (cid:19) and Φ(U) istheRademacherΦ-function defined by (see, e.g.,Ref. 31) p+s 12s(p,q) forq = 0 p r q − 6 Φ = (2.3) q s r (cid:20)(cid:18) (cid:19)(cid:21) forq = 0 s wheres(b,a) denotes theDedekind sum(see, e.g.,Ref. 32, andalso Ref. 16) |a|−1 k kb s(b,a) = sign(a) (2.4) a · a Xk=1(cid:16)(cid:16) (cid:17)(cid:17) (cid:16)(cid:16) (cid:17)(cid:17) with x x 1 ifx Z −⌊ ⌋− 2 6∈ ((x)) = 0 ifx Z ∈ and x isthegreatestintegernot exceedingx. It isknownthattheDedekindsumis rewrittenas ⌊ ⌋ a−1 1 k kb s(b,a) = cot π cot π 4a a a k=1 (cid:18) (cid:19) (cid:18) (cid:19) X An n n matrix L is a linking matrix L = lk +p /q δ , and sign(L) is a signature of L, j,k j,k j j j,k × · i.e.,thedifferencebetween thenumberofpositiveandnegativeeigenvaluesofL. Thepolynomial J ( )isthecoloredJonepolynomialforlink withthecolork forthej-thcomponentlink, k1,...,kn L L j and ρ(U(p,q)) isarepresentationρ ofPSL(2;Z); ρ(U(p,q)) a,b sign(q) = i e−π4iΦ(U(p,q))e2πNiqsb2 e2Nπiqpγ2 eNπiqγb e−Nπiqγb (2.5) − 2N q − | | γ mXod2Nq (cid:16) (cid:17) γ=a mod2N p for1 a,b N 1 [13], andwehave ≤ ≤ − 2 abπ ρ(S) = sin a,b N N r (cid:18) (cid:19) (2.6) ρ(T)a,b = e2πNia2−π4i δa,b with 0 1 1 1 S = − T = (2.7) 1 0 0 1 (cid:18) (cid:19) (cid:18) (cid:19) satisfying S2 = (ST)3 = 1 4 Weshouldnote[32]thattheDedekindsumsatisfies s( b,a) = s(b,a) (2.8) − − s(b,a) = s(b′,a) forbb′ 1 (mod a) (2.9) ≡ and thattheRademacher Φ-functionfulfills Φ(SU(p,q)) = Φ(U(p,q)) 3 sign(pq) (2.10) − Proposition1( [22]). TheWRT invariantfortheBrieskornhomologyspheres isgiven by e2Nπi(φ4−21) e2Nπi 1 τN Σ(p1,p2,p3) − (cid:16) (cid:17) (cid:0) = eπi(cid:1)/4 2PN−1e−2P1Nn2πi 3j=1 eNnpjπi −e−Nnpjπi (2.11) 2√2P N Q (cid:16)eNnπi e−Nnπi (cid:17) n=0 − NX∤n where 1 φ = φ(p ,p ,p ) = 3 +12 s(p p ,p )+s(p p ,p )+s(p p ,p ) (2.12) 1 2 3 2 3 1 1 3 2 1 2 3 − P (cid:0) (cid:1) Proof. This was proved in Refs. 22,38 for a general n-fibered manifold, but we give a proof here againforcompletion. TheJones polynomialforalink depicted inFig. 1 isgivenby L 1 3 sin(k k π/N) j=1 0 j J ( ) = k0,k1,k2,k3 L sin(π/N) · sin2(k π/N) Q 0 where k is a color of an unknotted component whose linking number with other components is 0 1, and k (for j = 1,2,3) denotes a color of a component of link which is to be p /q -surgery. j j j L Withthissettingwehave 3 q sign(L) = sign j 1 p − j=1 (cid:18) j(cid:19) X From (2.2)wegetthequantuminvariantas eπi/N e−πi/N τ Σ(p ,p ,p ) N 1 2 3 − · N−1 (cid:0) (cid:1) =(cid:0)eπ4iNN−2(3+ 3j(cid:1)=1Φ(SU(pj,qj))) ρ(S)k0,1 2 P kX0=1 eπNik0 −e−πNik0 3 N(cid:16)−1 (cid:17) × ρ(U(pj,qj))kj,1 eπNik0kj −e−πNik0kj Yj=1kXj=1 (cid:16) (cid:17) In thisexpressionwehavebydefinition i ρ(S)k0,1 = √−2N eπNik0 −e−πNik0 5(cid:16) (cid:17) and forℓ Zwehave ∈ N−1 ρ(U(p,q))k,1 eπNiℓk e−πNiℓk − Xk=1 (cid:16) (cid:17) N−1 sign(q) = ie−π4iΦ(U(p,q))+2πNisq e2πNipqγ2 eNπiqγ e−Nπiqγ eπNiℓγ e−πNiℓγ − 2N q − − | | Xk=1 γ mXod2Nq (cid:16) (cid:17) (cid:16) (cid:17) γ≡k mod2N p = ie−π4iΦ(U(p,q))+2πNisq sign(q) e2Nπiqpγ2 e2πiq2ℓN+q1γ e2πiq2ℓN−q1γ − 2N q − | | γ mXod2Nq (cid:16) (cid:17) = sign(p) e−π4iΦ(SU(pp,q))+2πNisq e−2pπqiN(2Nqn+qℓ+1)2 e−2pπqiN(2Nqn+qℓ−1)2 − p − | | n Xmodp(cid:16) (cid:17) p Here in the first equality we have used γ = k (mod 2N), and applied a symmetry under γ → 2N q γ in the second equality. In the last equality, we have used an identity eπi(1−sign(p)) = 2 − sign(p),and theGausssumreciprocityformula[13] N eπNiMn2+2πikn = eπ4isign(NM) e−MπiN(n+k)2 (2.13) s M n modN (cid:12) (cid:12) n modM X (cid:12) (cid:12) X (cid:12) (cid:12) whereN,M ZwithN k Zand N M b(cid:12)eing(cid:12)even. ∈ ∈ Acombinationoftheseresultsreduces to eπi/N e−πi/N τ Σ(p ,p ,p ) N 1 2 3 − · N−1 (cid:0) (cid:1) i sig(cid:0)n(P) 3πi+π(cid:1)i 1 −πiφ 1 = e4 2N j pjqj 2N 2 P N P eπNik0 e−πNik0 | | kX0=1nj Xmodpj − p 3 e−2Nπpijqj(2Nqjnj+k0qj+1)2 e−2Nπpjiqj(2Nqjnj+k0qj−1)2 × − Yj=1(cid:16) (cid:17) The summand is invariant under (i) k k + 2N and n n 1, (ii) n n + p . Using 0 0 j j j j j → → − → this symmetry and recalling that p are pairwise coprime integers, the sum, N−1 , is j k0=1 nj modpj transformedintoasum, , withsettingalln = 0. Asa result,wefind k0=a+2Nn j P P 1≤a≤N−1 0≤n≤P−1 P eπi/N e−πi/N τ Σ(p ,p ,p ) N 1 2 3 − · (cid:0) (cid:1) (cid:0) = i (cid:1) e34πi−2πNiφ e−2NπiPk02 3j=1 eNπpijk0 −e−Nπpijk0 −√2P N Q (cid:16)eπNik0 e−πNik0 (cid:17) k0=Xa+2Nn − 1≤a≤N−1 0≤n≤P−1 Settingk 2P N k , weobtainastatementoftheproposition. (cid:3) 0 0 → − 6 3. MODULAR FORMS Wedefinetheoddperiodicfunctionχ(ℓ1,ℓ2,ℓ3)(n) withmodulus2P by 2P 3 ℓ 1 forn = P 1+ ε j mod 2P whereε ε ε = 1 j 1 2 3 pj − (cid:16) Xj=1 (cid:17) χ(2ℓP1,ℓ2,ℓ3)(n) = 1 forn = P 1+ 3 ε ℓj mod 2P whereε ε ε = 1 (3.1) j 1 2 3 − p j (cid:16) Xj=1 (cid:17) 0 others Here P = p p p with pairwise coprime positiveintegers p , and we mean ε = 1. Integers ℓ 1 2 3 j j j ± are 1 ℓ p 1 (3.2) j j ≤ ≤ − Thereexistsasymmetryoftheperiodicfunction χ(ℓ1,ℓ2,ℓ3)(n) = χ(p1−ℓ1,p2−ℓ2,ℓ3)(n) 2P 2P = χ(p1−ℓ1,ℓ2,p3−ℓ3)(n) = χ(ℓ1,p2−ℓ2,p3−ℓ3)(n) (3.3) 2P 2P With this periodic function, we define the function Φ(ℓ1,ℓ2,ℓ3)(τ) for τ in the upper half plane, p τ H, by ∈ Φ(pℓ1,ℓ2,ℓ3)(τ) = 21 nχ(2ℓP1,ℓ2,ℓ3)(n)q4nP2 (3.4) n∈Z X whereas usual q = exp(2πiτ) Eq.(3.3)makes thenumberoftheindependentfunctionsΦ(ℓ1,ℓ2,ℓ3)(τ) tobe p 1 D = D(p ,p ,p ) = (p 1)(p 1)(p 1) (3.5) 1 2 3 1 2 3 4 − − − Proposition2. ThefunctionΦ(ℓ1,ℓ2,ℓ3)(τ)isamodularformwithweight3/2. NamelyundertheS- p andT-transformations(2.7)we have 3/2 Φ(ℓ1,ℓ2,ℓ3)(τ) = i Sℓ′1,ℓ′2,ℓ′3Φ(ℓ′1,ℓ′2,ℓ′3)( 1/τ) (3.6) p τ ℓ1,ℓ2,ℓ3 p − (cid:18) (cid:19) ℓ′,ℓ′,ℓ′ 1X2 3 Φ(ℓ1,ℓ2,ℓ3)(τ +1) = Tℓ1,ℓ2,ℓ3Φ(ℓ1,ℓ2,ℓ3)(τ) (3.7) p p 7 where the sum runs over D(p ,p ,p ) distinct triples. A D D matrix S and diagonal matrix T 1 2 3 × arerespectivelygiven by Sℓ′1,ℓ′2,ℓ′3 = 32 ( 1)1+P+P 3j=1 ℓjp+jℓ′j+(ℓ×ℓ′)·p 3 sin P ℓjℓ′j π (3.8) ℓ1,ℓ2,ℓ3 rP − P j=1 (cid:18) pj2 (cid:19) Y 3 πi ℓ 2 Tℓ1,ℓ2,ℓ3 = exp P 1+ j (3.9) 2 p j ! (cid:16) Xj=1 (cid:17) We omit a proof as it is tedious but straightforward. We only need the Poisson summation formula ∞ f(n) = e−2πitnf(t)dt (3.10) n∈Z n∈ZZ−∞ X X 4. THE EICHLER INTEGRAL AND THE CHERN–SIMONS INVARIANT The Eichler integral was originally defined as a k 1-fold integration of a modular form with − integral weight k Z (see, e.g., Ref. 18). Following Refs. 23,44 (see also Refs. 9–11), we ≥2 ∈ definetheEichlerintegralofthemodularform Φ(ℓ1,ℓ2,ℓ3)(τ) withhalf-integralweight3/2by p ∞ Φ(pℓ1,ℓ2,ℓ3)(τ) = χ(2ℓP1,ℓ2,ℓ3)(n)q4nP2 (4.1) n=0 X e We should remark that there are D(p ,p ,p ) independent Eichler integrals due to the symme- 1 2 3 try (3.3). Proposition3. ThefunctionΦ(ℓ1,ℓ2,ℓ3)(τ) hasa limitingvalueinτ 1/N forN Zas p → ∈ PN Φ(pℓ1,ℓ2,ℓ3)e(1/N) = χ(2ℓP1,ℓ2,ℓ3)(n) 1− PnN e2P1Nn2πi (4.2) Xn=0 (cid:16) (cid:17) e Wealsohave Φ(ℓ1,ℓ2,ℓ3)(N) = 1 2P nχ(ℓ1,ℓ2,ℓ3)(n) eπ2iPN 1+ j pℓjj 2 (4.3) p −2P 2P ! (cid:18) P (cid:19) n=1 X e 2P 1 = nχ(ℓ1,ℓ2,ℓ3)(n) Tℓ1,ℓ2,ℓ3 N −2P 2P ! n=1 X (cid:0) (cid:1) Toprovethisproposition,weusethefollowingformulaforasymptoticexpansions(seeRefs.23, 44); 8 Proposition4. Let C (n)beaperiodicfunctionwithmeanvalue0andmodulusf. Thenwehave f an asymptoticexpansionast 0; ց ∞ ∞ ( t)k C (n)e−nt L( k,C ) − (4.4) f f ≃ − k! n=1 k=0 X X ∞ ∞ ( t)k C (n)e−n2t L( 2k,C ) − (4.5) f f ≃ − k! n=1 k=0 X X HereL(k,C )is theDirichletL-functionassociatedwith C (n), andis givenby f f fk f n L( k,C ) = C (n)B f f k+1 − −k +1 f n=1 (cid:18) (cid:19) X where B (x) isthen-th Bernoullipolynomialdefined from n text ∞ B (x) = n tn et 1 n! − n=0 X See, e.g.,Ref. 23foraproof. Proofof Proposition3. We assumeM and N are coprime integers,and N > 0. By definition, we have ∞ M y Φ(pℓ1,ℓ2,ℓ3) N +i 2π = C2(ℓP1N,ℓ2,ℓ3)(n)e−4yPn2 (cid:18) (cid:19) n=0 X wherey > 0and e C(ℓ1,ℓ2,ℓ3)(n) = χ(ℓ1,ℓ2,ℓ3)(n)e2PMNn2πi 2PN 2P We see that C(ℓ1,ℓ2,ℓ3)(n + 2P N) = C(ℓ1,ℓ2,ℓ3)(n), and C(ℓ1,ℓ2,ℓ3)(2P N n) = C(ℓ1,ℓ2,ℓ3)(n). 2PN 2PN 2PN − − 2PN Then wecan applyProp. 4, and wehavean asymptoticexpansioniny 0 as ց M y ∞ L( 2k,C(ℓ1,ℓ2,ℓ3)) y k Φ(ℓ1,ℓ2,ℓ3) +i − 2PN p N 2π ≃ k! −4P (cid:18) (cid:19) Xk=0 (cid:16) (cid:17) whichgivesalimiteingvalueas Φ(ℓ1,ℓ2,ℓ3)(M/N) = L(0,C(ℓ1,ℓ2,ℓ3)) (4.6) p 2PN Using a fact that χ(ℓ1,ℓ2,ℓ3)(2P n) = χ(ℓ1,ℓ2,ℓ3)(n) and that an explicit form of the Bernoulli 2P e− − 2P polynomialisB (x) = x 1,we get 1 − 2 PN n Φp(ℓ1,ℓ2,ℓ3)(M/N) = χ(2ℓP1,ℓ2,ℓ3)(n) 1− P N e2PMNn2πi Xn=0 (cid:16) (cid:17) Eq. (4.2) directly foellows from this formula. Eq. (4.3) can also be given from the above formula when werecall 2P χ(ℓ1,ℓ2,ℓ3)(n) = 0. (cid:3) n=1 2P 9 P We can see that, though we have D(p ,p ,p ) independent Eichler integrals, the limiting value 1 2 3 Φ(ℓ1,ℓ2,ℓ3)(N)atN Zcomputedineq.(4.3)becomesidenticallyzeroforsometriples(ℓ ,ℓ ,ℓ ). p 1 2 3 ∈ Peroposition 5. Let γ(p ,p ,p ) be the number of independent Eichler integrals such that 1 2 3 Φ(ℓ1,ℓ2,ℓ3)(N) 0 forN Z, namely p 6≡ ∈ 2P e nχ(ℓ1,ℓ2,ℓ3)(n) = 0 (4.7) 2P 6 n=1 X Wethenhave γ(p ,p ,p ) = s(p p ,p )+s(p p ,p )+s(p p ,p ) 1 2 3 1 2 3 2 3 1 1 3 2 P 1 1 1 1 1 + 1 + (4.8) 12 − p 2 − p 2 − p 2 − 12P 4 (cid:18) 1 2 3 (cid:19) where s(b,a) istheDedekindsum defined ineq. (2.4). Proof. ForasakeofourbrevitywesetA = ℓi + ℓj ℓk fori = j = k = iandi,j,k 1,2,3 . k pi pj − pk 6 6 6 ∈ { } As wehave0 < ℓk < 1 bydefinition,wehave0 < ℓj < 3 and 1 < A < 2. pk j pj − k When 0 < ℓj < 1, we have 0 < A +P1 < 2 1 ℓk < 2. Then in a domain j pj k − pk 0 < n < 2PP, the periodic function χ(ℓ1,ℓ2,ℓ3)(n) defined(cid:16)in eq.(cid:17)(3.1) takes a value 1 when 2P n = P 1 ℓj ,P(1 + A ), while it is 1 when n = P 1+ ℓj ,P (1 A ). Then − j pj k − j pj − k wefind(cid:16) 2P Pnχ(ℓ1,(cid:17)ℓ2,ℓ3)(n) = 0, andit isinconsistentwitheq. ((cid:16)4.7). P (cid:17) n=1 2P We thPus have a condition 1 < ℓj < 3 to fulfill eq. (4.7), because it is impossible to have j pj ℓj Z. UnderthisconditiontherearetwopossibilitiesforaconditionofA ;(i) 1 < A < 1 j pj ∈ P k − k forall k, or(ii) 1 < A < 1 fortwo k’s and 1 < A < 2 for anotheri. By thesamecomputation P − k i wecan check 2P nχ(ℓ1,ℓ2,ℓ3)(n) = 4P (4.9) 2P n=1 X for the former case, while we have 2P nχ(ℓ1,ℓ2,ℓ3)(n) = 0 for the latter. To conclude, a condi- n=1 2P tion(4.7)isfulfilledwhen thetripleofintegerssatisfies P ℓ ℓ ℓ ℓ ℓ ℓ 1 2 3 1 2 3 1 < + + < 3 1 < + < 1 p p p − p p − p 1 2 3 1 2 3 (4.10) ℓ ℓ ℓ ℓ ℓ ℓ 1 2 3 1 2 3 1 < + < 1 1 < + + < 1 − p − p p − −p p p 1 2 3 1 2 3 This constraint is depicted as the numberof theintegral lattice pointsof an interiorof the tetrahe- dron (seeFig. 2). 10