ebook img

On particle collisions in the gravitational field of the Kerr black hole PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On particle collisions in the gravitational field of the Kerr black hole

On particle collisions in the gravitational field of the Kerr black hole A.A.Griba,b,Yu.V.Pavlova,c aA.FriedmannLaboratoryforTheoreticalPhysics,30/32Griboedovcan.,St.Petersburg191023,Russia bTheoreticalPhysicsandAstronomyDepartment,TheHerzenUniversity,48,Moika,St.Petersburg191186,Russia cInstituteofMechanicalEngineering,RussianAcademyofSciences,61Bolshoy,V.O.,St.Petersburg199178,Russia Abstract ScatteringofparticlesinthegravitationalfieldofKerrblackholesisconsidered. Itisshownthatscatteringenergyofparticlesin the centre of mass system can obtain very large values not only for extremalblack holes but also for nonextremalones existing 1inNature. Thiscanbeusedforexplanationofstillunresolvedproblemoftheoriginofultrahighenergycosmicraysobservedin 1 Augerexperiment.Extractionofenergyafterthecollisionisinvestigated.ItisshownthatduetothePenroseprocesstheenergyof 0 theparticleescapingtheholeatinfinitycanbelarge.Contradictionsintheproblemofgettinghighenergeticparticlesescapingthe 2 blackholeareresolved. n aKeywords: Blackholes,Particlecollisions,Cosmicrays J 0 31. Introduction The problem of the origin of ultrahigh energy cosmic rays (UHECR) is a major unsolved issue in astroparticle physics. c] In [1] we put the hypothesis that Active Galactic Nuclei Surely there can be different mechanisms of getting UHECR q(AGN)canbethesourcesofultrahighenergyparticlesincos- from AGN. Our aim is full investigation of the role of pro- -micraysobservedrecentlybytheAUGERgroup(see[2])due r cesses of collisions and decays of elementary particles close gto the processes of converting dark matter formed by super- tothehorizonoftheKerrblackholesintheAGN.Theseparti- [heavyneutralparticlesintovisibleparticles—quarks,leptons clescanbesuperheavyparticlesofdarkmatterorusualprotons, 2 (neutrinos), photons. Such processes as it was discussed pre- ironnuclei,etc.Inthelattercasesforusualparticlestogetlarge vviouslyin[3, 4]couldleadtotheoriginationofvisiblematter energyonemustconsidermultiplescattering. 6from the dark matter particles in the early Universe when the 5energy of particles was of the Grand Unification (GU) order First calculations of the scattering of particles in the ergo- 7(1013 1014GeV)i.e. attheendofinflationera. sphereof therotatingblackhole, takinginto accountthe Pen- 0 If A−GN are rotating black holes then in [1] we discussed roseprocess,withtheresultthatparticleswithhighenergycan . 1the idea that “This black hole acts as a cosmic supercollider escapetheblackhole,weremadein[8]. Recentlyin[9]itwas 0 in which superheavy particles of dark matter are accelerated shownthatfortherotatingblackhole(ifitisclosetothecritical 0 1closetothehorizontotheGUenergiesandcanbescatteringin one)theenergyofscatteringisunlimited.Theresultof[9]was :collisions.” ItwasalsoshownthatinPenroseprocess[5]dark criticizedin[10,11]wheretheauthorsclaimedthatiftheblack v matter particle can decay on two particles, one with the nega- hole is nota critical rotating black hole so that its dimension- i Xtiveenergy,theotherwiththepositiveoneandparticlesofvery lessangularmomentumA,1butA=0.998thentheenergyis rhigh energyof the GU order can escape the black hole. Then limited. a theseparticlesduetointeractionwithphotonsclosetotheblack Inthispaperweshowthattheenergyofscatteringinthecen- holewilllooseenergyanalogouslyuptotheGreisen-Zatsepin- treofmasssystemcanbestillunlimitedinthecasesofmultiple Kuzminlimitincosmology[6]. scattering.InSection2,wecalculatethisenergy,reproducethe Processes of converting dark matter particles into visible resultsof[9]–[11]andshowthatinsomecases(multiplescat- ones as well as collisions of dark matter particles close to the tering)theresultsof[10,11]onthelimitationsofthescattering horizonoftheblackholeintheAGNcanplayimportantrolein energyfornonextremalblackholesarenotvalid.InSection2.1 thesolutionoftheproblemofcuspsasitwasdiscussedin[7]. anevaluationofthetimenecessaryforthefreelyfallingparti- Accordingto the hierarchicalmodelthegalaxieswere formed cletogettheunboundedlargeenergyincollisionwiththeother dueto initialinhomogeneitiesofdarkmatterdistribution. But particleinthecentreofmasssystemismade. Itisprovedthat after originationof rotatingblack holesat the centre of future inordertohaveinfinitelylargeenergyofcollisiononthehori- galaxies large part of the dark matter became redistributed so zon infinitely large time from the beginning of free falling of thatitcanbemainlypresentinthehaloofgalaxy[7]. theparticleontherotatingblackholeisneeded. Particlecolli- sionsinsidetherotatingblackholeareconsideredinSection3. InSection4,weobtaintheresultsfortheextractionoftheen- E-mailaddresses:[email protected](A.A.Grib), [email protected](Yu.V.Pavlov) ergy after collision in the field of the Kerr’s metric. It occurs thatthePenroseprocessplaysimportantroleforgettinglarger whereui = dxi/ds. Takingthesquared(9)andduetouiu = 1 i energiesofparticlesatinfinity. Ourcalculationsshowthatthe oneobtains conclusionof[11]abouttheimpossibilityofgettingatinfinity E =m√2 1+ui u . (10) theenergylargerthantheinitialoneinparticlecollisionsclose c.m. (1) (2)i totheblackholeiswrong. q Thescalarproductdoesnotdependonthechoiceofthe coor- ThesystemofunitsG =c=1isusedinthepaper. dinateframeso (10) is valid in anarbitrarycoordinatesystem andforarbitrarygravitationalfield. 2. Theenergyofcollisioninthefieldofblackholes We denote x = r/M, x = r /M, x = r /M, A = a/M, H H C C l = L /M. Apply the formula(10) for calculation of the en- n n Let us consider particles falling on the rotating chargeless ergyinthecentreofmassframeoftwocollidingparticleswith black hole. The Kerr’s metric of the rotating black hole in angular momenta L , L , which are nonrelativistic at infinity 1 2 Boyer–Lindquistcoordinateshastheform (ε = ε = 1) and are moving in Kerr’s metric. Using (1), 1 2 2Mr(dt asin2θdϕ)2 (6)–(8)oneobtains[9] ds2 =dt2 − − r2+a2cos2θ E2 1 c.m. = 2x2(x 1)+l l (2 x) (r2+a2cos2θ) dr2 +dθ2 (r2+a2)sin2θdϕ2, (1) 2m2 x∆x" − 1 2 − − ∆ !− +2A2(x+1) 2A(l1+l2) (11) − where 2x2+2(l A)2 l2x 2x2+2(l A)2 l2x , ∆=r2 2Mr+a2, (2) − 1− − 1 2− − 2 − q(cid:16) (cid:17)(cid:16) (cid:17)# Misthemassoftheblackhole,J =aMisangularmomentum. where Inthecasea = 0themetric(1)describesthestaticchargeless ∆ = x2 2x+A2 =(x x )(x x ). (12) blackholeinSchwarzschildcoordinates.Theeventhorizonfor x − − H − C theKerr’sblackholecorrespondstothevalue Tofindthelimitr r fortheblackholewithagivenangu- H larmomentumAone→musttakein(11)x = x +αwithα 0 r =rH M+ √M2 a2. (3) and do calculations up to the order α2. TakHing into acco→unt ≡ − A2 = x x , x +x =2,afterresolutionofuncertaintiesinthe TheCauchyhorizonis H C H C limitα 0oneobtains → r =r M √M2 a2. (4) C ≡ − − E (r r ) (l l )2 c.m. → H = 1+ 1− 2 , (13) Thesurfacecalled“thestaticlimit”isdefinedbytheexpression 2m s 2xC(l1 lH)(l2 lH) − − r =r M+ √M2 a2cos2θ. (5) where 0 ≡ − 2x 2 The region of space-time between the horizon and the static l = H = 1+ √1 A2 . (14) H limitisergosphere. A A − For equatorial(θ = π/2) geodesicsin Kerr’s metric (1) one Inthe limitr r(cid:16) forthe extr(cid:17)emalblackholeoneobtains H → obtains([13], 61) theexpression § dt 1 2Ma2 2Ma l 2 l 2 = r2+a2+ ε L , (6) a= M E (r r )= √2m 2− + 1− , (15) dτ ∆ r − r ⇒ c.m. → H l 2 l 2 " ! # r 1− 2− given first in [9], showing the unlimited increasing of the en- dϕ 1 2Ma 2M dτ = ∆ r ε+ 1− r L , (7) ergy of collision when the specific angular momentumof one " ! # offallingparticlesgoestothe limitingpossiblevalueequalto dr 2 2M a2ε2 L2 ∆ 2M necessary for achieving the horizonof the extremalblack dτ =ε2+ r3 (aε−L)2+ r2− − r2 δ1, (8) hole. ! Formula(8)leadstolimitationsonthepossiblevaluesofthe where δ = 1 for timelike geodesics (δ = 0 for isotropic angular momentum of falling particles: the massive particle 1 1 geodesics), τ is the proper time of the moving particle, ε = free falling in the black hole with dimensionless angular mo- const is the specific energy: the particle with rest mass m has mentumAbeingnonrelativisticatinfinity(ε=1)toachievethe the energyεm in the gravitationalfield (1); Lm = constis the horizonof the black hole must have angular momentumfrom angularmomentumoftheparticlerelativetotheaxisorthogo- theinterval naltotheplaneofmovement. 2 1+ √1+A =l l l =2 1+ √1 A . (16) Let usfind the energy Ec.m. in the centreof masssystem of − L ≤ ≤ R − two collidingparticleswiththesame restmin arbitrarygravi- Notethat(cid:16)forthement(cid:17)ionedlimitingvalu(cid:16)estherighth(cid:17)andside tationalfield. Itcanbeobtainedfrom oftheformula(8)iszerofor (E ,0,0,0)=mui +mui , (9) x =2 1+ √1 A A, x =2 1+ √1+A +A (17) c.m. (1) (2) R − − L 2 (cid:16) (cid:17) (cid:16) (cid:17) forl=l andl=l correspondingly. (see(8)in[11]). SoevenforvaluesclosetotheextremalA = R L ThedependenceoftheenergyofcollisionE ontheradial 1 of the rotating black hole Emax/m can be not very large as c.m. c.m. coordinate for l = l , l = l (see (16)) is given on Fig. 1. it is mentioned in [10, 11]. So for A = 0.998 considered 1 R 2 L max TheboldfacelinecorrespondstoA=0.998,theordinarycurve as the maximal possible dimensionless angular momentum of theastrophysicalblackholes(see[14]),from(18)oneobtains Ec.m.(cid:144)m Emax/m 18.97. 20 c.m. ≈ Doesitmeanthatinrealprocessesofparticlescatteringinthe 17.5 vicinity of the rotating nonextremalblack holes the scattering 15 energyislimitedsothatnoGrandUnificationorevenPlanck- ean energiescan be obtained? Let us show that the answer is 12.5 no! If one takes into account the possibility of multiple scat- 10 teringsothattheparticlefallingfromtheinfinityontheblack 7.5 hole with some fixed angularmomentumchangesits momen- 5 tum in the result of interaction with particles in the accreting disc andafterthisisagainscatteringcloseto the horizonthen 2.5 r thescatteringenergycanbeunlimited. x1 x2 €r€€€€€€€ Thelimitingvalueoftheangularmomentumoftheparticle 1.1 1.2 1.3 1.4 H closetothehorizonoftheblackholecanbeobtainedfromthe condition of positive derivative in (6) dt/dτ > 0, i.e. going Figure1:Thedependenceoftheenergyofparticlecollisiononthecoordinater. “forward”intime.Soclosetothehorizononehasthecondition to A = 0.9, the dotted to A = 0.5, the line formed by points l<ε2xH/Awhichforε=1givesthelimitingvaluelH. describes nonrotating black hole (A = 0). The fractures on From(8)onecanobtainthepermittedintervalinrforparti- dense line, denoted by dotted lines correspond to values x = cleswithε=1andangularmomentuml=lH δ.Inthesecond − orderinδclosetothehorizononeobtains x (A)M/r (A)(see x in(17))i.e. tozeroesoftheexpressions R H R inrootsinformula(11). δ2x2 l=l δ x. x + C . (20) PuttingthelimitingvaluesofangularmomentalL,lRintothe H − ⇒ H 4x √1 A2 H formula (13) one obtainsthe maximalvalues of the energyof − Iftheparticlefallingfromtheinfinitywithl l arrivestothe collisionforparticlesfallingfrominfinity R ≤ regiondefinedby(20)andhereitinteractswithotherparticles Emax(r r )= c.m. → H oftheaccretiondiscoritdecaysonmorelightparticlesothatit 2m 1 A2+ 1+ √1+A+ √1 A 2 getsthelargerangularmomentuml1 =lH −δ,thendueto(13) = − − . (18) thescatteringenergyinthecentreofmasssystemis √41 A2 vut (cid:16)1+ √1 A2 (cid:17) − − m 2(l l ) ThedependenceofEmaxontheangularmomentumoftheblack E H − 2 (21) holeisshownonFig.c.2m.. c.m. ≈ √δ s1 √1 A2 − − anditincreaseswithoutlimitforδ 0. ForA = 0.998and Ecm.max.(cid:144)m l =l , E 3.85m/√δ. → max 2 L c.m. Notethatfo≈rrapidlyrotatingblackholesA = 1 ǫ thedif- − 16 ferencebetweenlH andlR isnotlarge √1 A 12 l l = 2 − √1 A+ √1+A A H R − A − − 8 2(√2 1)(cid:16)√ǫ, ǫ 0. (cid:17) (22) ≈ − → For A = 0.998, l l 0.04sothepossibilityofgetting 4 max H R − ≈ smalladditionalangularmomentumininteractionclose tothe a €€€€€€€€ horizonseemsmuchprobable. 0.2 0.4 0.6 0.8 1 M Thatiswhywecometoaconclusionthatunboundedlylarge energycanbeobtainedinthecentreofmasssystemofscatter- ing particles. This means that physical processes not only on Figure 2: The dependence of the maximal energy of collision for particles the Grand Unificationscale buteven on the Planckean energy fallingfrominfinityontheblackholeangularmomentum. cangointhiscase. For nonrotatingblack hole the maximal energyof collision One can obtain the same result of getting unbounded large dueto(18)isEmax/m=2√5(firstfoundin[12]). energyin the centre of mass frame for particles with different c.m. ForA=1 ǫ withǫ 0formula(18)gives: massesm ,m andε ,ε [15]. 1 2 1 2 − → Howeveranimportantquestionistolookhowparticleswith m m 4,06 Ecm.max.(r→rH)∼2 21/4+2−1/4 ǫ1/4 ≈ ǫ·1/4 . (19) largeenergycanbeextractedfromtheblackhole?Someenergy (cid:16) (cid:17) 3 surelywillbeloosedduetotheredshift, butaswe’llshowin Fortheintervalofpropertimeofthefreefallingtotheblack thispaperultrarelativisticparticlesstillcanbeobservedoutside holeparticleoneobtainsfrom(8) theblackhole.Observationofthemcangiveusinsightintothe GrandUnificationandPlanckeanphysicsnearthehorizon. x0 √x3dx Beforeansweringonthisquestionletusinvestigatetheprob- ∆τ= M . (27) 2x2 l2x+2(A l)2 lemaboutthetimeneededfortheenergytogrowunboundedly Zxf − − large. p Iftheangularmomentumoftheparticlefallinginsidetheblack hole is such that l < l < l then the propertime is finite for 2.1. Thetimeofmovementbeforethecollisionwithunbounded L R x x . ForA=1,l=2theintegral(27))isequalto energy f → H Let us show that in order to get the unboundedly growing M √x 1 x0 ∆τ= 2√x(3+x)+3ln − (28) energy one must have the time intervalfrom the beginningof 3√2 √x+1 thefallinginsidetheblackholetothemomentofcollisionalso !(cid:12)(cid:12)(cid:12)xf (cid:12) growing infinitely. This is connected with the fact of infinity and it diverges logarithmically when xf 1(cid:12)(cid:12). So to get the → of coordinate interval of time needed for a freely particle to collision with infinite energyoneneedsthe infinite intervalof cross the horizon of the black hole (for Schwarzschild metric ascoordinateaspropertimeofthefreefallingparticle. thisquestionwasconsideredin[16]). Togetlargefiniteenergyonemusthavesomefinitetime[15]. From Fig. 1 one can see that the collision energy can get So to have the collision of two protonswith the energyof the large values in the centre of mass system only if the collision orderofthe GrandUnificationonemustwait forthe extremal occursclosetothehorizon.Unboundedlylargeenergyofcolli- black hole of the star mass the time 1024s, which is larger ∼ sionsoutsideofablackholearepossibleonlyforcollisionson thantheageoftheUniverse 1018s. Howeverforthecollision ≈ horizonx x (see(11),(13)). withtheenergy103 largerthanthatoftheLHConemustwait H → Fromequationoftheequatorialgeodesic(6),(8)foraparti- only 108s. ≈ clewithdimensionlessangularmomentumlandspecificenergy From(7),(8)fortheangleoftheparticlefallinginequatorial ε = 1(i.e. the particleis nonrelativisticatinfinity)fallingon planeoftheblackholeoneobtains the black hole with dimensionless angular momentum A one obtains x0 √x(xl+2(A l)) dx dr (x x )(x x ) 2x2 l2x+2(A l)2 ∆ϕ= − . (29) = − H − C − − . (23) (x x )(x x ) 2x2 l2x+2(A l)2 dt − √x px3+A2x+2A(A−l) Zxf − H − C − − p So the coordinatetime (propertime of the observerat rest far IfA,0,thenintegral(29)isdivergentforx x . Sobefore f H fromtheblackhole)oftheparticlefallingfromsomepointr = collision with infinitelylargeenergythe partic→lemustcommit 0 x Mtothepointr = x M >r isequalto infinitelylargenumberofrotationsaroundtheblackhole. 0 f f H x0 √x x3+A2x+2A(A l) dx ∆t = M − . (24) 3. Collisionofparticlesinsidetherotatingblackhole (x x )((cid:16)x x ) 2x2 l2x+(cid:17)2(A l)2 Zxf − H − C − − p As one can see from formula (11) the infinite value of the Incaseoftheextremalrotatingblackhole(A=1,x = x = R H collision energyin the centre of mass system can be obtained 1) and the limiting value of the angular momentum l = 2 the insidethehorizonoftheblackholeontheCauchyhorizon(4). integral(24)isequalto Indeed, from (12) the zeroes of the denominatorin (11): x = x , x= x , x=0. M 2√x(x2+8x 15) √x 1 x0 H C ∆t = − +5ln − (25) Let us find the expression for the collision energy for x √2 3(x−1) √x+1!(cid:12)(cid:12)xf xC. Note that the Cauchy horizon can be crossed by the fr→ee (cid:12) (cid:12) falling fromthe infinity particle underthe same conditionson anditdivergesas(xf −1)−1forxf →1. (cid:12)(cid:12) the angular momentum (16) as in case of the event horizon. In allothercases, when A 1 andangularmomentl < l , H Denote ≤ integral(24)divergeslogarithmicallyif x x . Thisfollows 2x 2 f → H l = C = 1 √1 A2 . (30) fromequality C A A − − (cid:16) (cid:17) x3+A2x+2A(A−l)=(x−xH)(x2+xHx+2xH)+2A(lH−l).(26) NotethatlL <lC ≤lR ≤lH. Tofindthelimitr r fortheblackholewitha givenan- C Note that for the particle with ε = 1 outside the horizon for gular momentum A o→ne must take in (11) x = x +α and do C A < 1 the angular momentum l < lH (see (20)). So for all calculationswithα 0. Thelimitingenergyhastwodifferent → possible values of l and A to get the collision with infinitely expressionsdependingonthevaluesofangularmomenta.If growing energy in the centre of mass system needs infinitely largetime. (l l )(l l )>0, (31) 1 C 2 C − − 4 tih.ee.nl1,l2 areeitherbothlargerthanlC,orbothsmallerthanlC, =µ ε2 + 2M (aε L )2+ a2ε21µ−L21µ ∆ s 1µ r3 1µ− 1µ r2 − r2 Ec.m.(2rm→rC) = s1+ 2xH(l1(l−1−lCl)2()l22−lC). (32)  ε2 + 2M (aε L )2+ a2ε22µ−L22µ ∆ . (39) − s 2µ r3 2µ− 2µ r2 − r2  This(flormulla)(ilssimlil)a<rt0o,(13)ifeverywhereH ↔C. If (33) Thesignsin(39)areputsothattheinitialparticlesandthepar- 1− C 2− C ticle(2)goinsidetheblackholewhileparticle(1)goesoutside i.e. l2 (lL, lC), l1 (lC, lR)(ortheopposite),then the black hole. The valuesε1µ,ε2µ are constantson geodesics ∈ ∈ ([13], 61)sotheproblemofevaluationoftheenergyatinfinity § E A 2(l l )(l l ) extractedfromtheblackholeincollisionreducestoaproblem c.m. = 1− C C − 2 , x xC.(34) tofindthesevalues. m 1− √1−A2 s √1−A2(x−xC) → Theinitialparticlesinourcaseweresupposedtobenonrela- Itisseen thatthelimitisinfinite forallvaluesofangularmo- tivisticatinfinity:ε1 =ε2 =1,soEq.(39)becomes menta l ,l (33). This could be interpreted[17] as the known 1 2 instability of the internal Kerr’s solution (see [18, chap. 14]). m 2M (a L )2+ 2M L21 However,fromEq.(6)wecansee − s r3 − 1 r − r2 ddτt(r→rC+0)=( −+∞∞,, iiff ll<>llCC., (35) + s2rM3 (a−L2)2+ 2rM − Lr222  Tizheadt(isseweahlysoth[e17c]o)l.lisionswithinfiniteenergycannotbereal- =µ ε2 + 2M (aε L )2+ a2ε21µ−L21µ ∆ s 1µ r3 1µ− 1µ r2 − r2 4. STchhewaerxztsrcahcitldio’nsanodfKeenrre’rsgmy etarfitcesr the collision in  2M a2ε2 L2 ∆ ε2 + (aε L )2+ 2µ− 2µ . (40) − s 2µ r3 2µ− 2µ r2 − r2  mwieLtnhetatmuLass,sceLosnsmfiad,lelsirnpgtehcieinfitcocasaeenbewlarhgckeienhsoiεnl1ete,orεac2cc,tuisrorpneedcbifefiotwcrseaoenmngueplararr>timcrleos-. Consideratfirstthecasea=0ofthenonrotatingblackhole. 1 2 H InthiscasetheEq.(40)hastheform Let two new particles with rest masses µ appeared, one of them(1)movedoutsidetheblackhole,theother(2)movedin- 2M L2 2M 2M L2 2M sideit. Denotethespecificenergiesofnewparticlesasε ,ε , m 1 1 + 2 1 tt—hoeriitarhleapinrlga4un-levaeorlfmotchoiemtiereosn.ttaaCti(oningnsbuidlnaeicrtskpohafrotµliec).leasmLo1vµe,mLe2µn,tivnit=he1dµexqi/u2daµs- − s r − r=2 µ − εr2 ! 1s+ Lr21µ−1r2 2M− r ! ergCyomanns(deuri(m1v)ao+tmioueni(n2)lt)auw=msµlie(navdi(i1n)teo+lavsi(t2i)c).particlecollisionsfor the(3e6n)- vtε21µ−1+ L22rµ2 1 −2Mr !. (41) Equamtio(εn1s+(3ε62))fo=rµt(aεn1dµ+ϕ-εc2oµm),ponentscanbewrittenas (37) T4Mhe(mseaex(im16a)l,e(1n8er)g).y−Forvtfocmo2lEµliq−s.io(n41i)sofron2reLg 1et=s−f−orLr2L,!|L1=| =L|L2|(i=n 1µ 2µ m(L +L )=µ(L +L ), (38) particular,fortheradialmovementoftheprodu|ctso|fre|acti|on) 1 2 1µ 2µ ε ε . The initial particles were supposed to be nonrela- 1µ 2µ ≤ i.e. thesumofenergiesandangularmomentaofcollidingpar- tivistic oninfinity andso from(37) one getsforthe energyof ticlesisconservedinthefieldofKerr’sblackhole. theparticlemovingoutsidetheblackhole Forther-componentfrom(8)oneobtains µε m. (42) 1µ ≤ 2M a2ε2 L2 ∆ Forradialmovementtheenergyradiatedtoinfinityoftheparti- m ε2+ (aε L )2+ 1− 1 − s 1 r3 1− 1 r2 − r2 clescollidedintheSchwarzschildblackholecannotbelarger + sε22+ 2rM3 (aε2−L2)2+ a2ε22r2−L22 − r∆2  t|tLhhe2aN|nno=rttheeae4tcMhrteiao,sttneLeqon1ucµeacrlu=gitryysLoio2nfnµo(t4=nh2ee)0idins(oittouhibabeltlaerpaidnadreSitadicclhilnmwe!coaarvszeesmcLhe1inl=dt),r−aifLd2iru,s=|.L14|M=  5 For the case when the collision takes place on the horizon x=r/M 1 → oftheblackhole(r r )thesystem(37)–(40)canbesolved exactly → H vt(1) = vϕ(1) = α + l1µ , (44) ut uϕ x 1 2 ε =AL1µ, ε =2m AL1µ, L =m(L +L ) L . (43) (1) (1) − 1µ 2rH 2µ µ − 2rH 2µ µ 1 2 − 1µ vr(1) = 2α2 + 2l1µα + 3l2 1. (45) In general case the system of three Eqs. (37)–(40) for ur −s(x 1)2 x 1 8 1µ− 2 (1) − − four variables ε , ε , L , L can be solved numeri- 1µ 2µ 1µ 2µ cally for a fixed value of one variable (and fixed parameters Duetotheconditiondt/dτ>0(movementforwardintime)the m/µ, L /M, L /M, a/M, r/M). The example of numerical necessary condition for collinearity is that both (44) and (45) 1 2 solution is µ/m = 0.3,l = 2.2, l = 2.198, A = 0.99, x = mustbezero,whichisnottrue.Thisleadstotheconclusionthat 1 2 1.21, l = 16.35, l = 1.69, ε = 7.215, ε = 0.548. the considerationsof the authorsof [11] forscattering exactly 1µ 2µ 1µ 2µ − − Notethattheenergyofthesecondfinalparticleisnegativeand onthehorizoncannotbeusedfortherealsituationofparticle theenergyofthefirstfinalparticlecontrarytothelimitobtained scatteringclosetothehorizon. in[11]islargerthantheenergyofinitialparticlesasitmustbe Allthisconfirmsourhypothesisin[1]thatthevicinityofthe in the case of a Penrose process [8]. If the mass of the parti- rotatingblackholeisthearenaoftheGrandUnificationphysics cleisnotverylargethisparticleisobservedasultrarelativistic. asitwasintheearlyUniverse.IntheearlyUniversegravitation Whatisthereasonofthiscontradiction? Letusinvestigatethe createdpairsofsuperheavyX,X˜ particlesdecayingthenasshort problemcarefully. livingandlongliving XS, XL particlesonordinaryquarksand Note that if one neglects the states with negative energy in leptons. ButthenduetothebreakingoftheGUsymmetryXL ergosphereenergyextractedin the consideredprocesscannot becamemetastableandsurvivedupto ourtimeasdarkmatter belargerthantheinitialenergyofthepairofparticlesatinfinity, particles. i.e. 2m. The same limit 2m for the extracted energy for any In the vicinity of rotating black holes XL can decay on or- (including Penrose process) scattering process in the vicinity dinary particles as it is possible for the GU energies as well of the black hole was obtained in [11]. Let us show why this as they can be converted into XS decaying particles because conclusionisincorrect. XLXS , 0. These decays can go with baryon and CP- Iftheangularmomentumofthefallingparticlesisthesame hcon|serviationbreaking,sothatdifferenthypothesesonthepro- then(see(40))onehasthesituationsimilartotheusualdecayof cesses in the early Universe can be checked by astrophysical theparticlewithmass2mintwoparticleswithmassµ. Dueto observationsofAGN. thePenroseprocessinergosphereitispossiblethattheparticle fallinginsidetheblackholehasthenegativerelativetoinfinity Acknowledgments energy and then the extracted particle can have energy larger than2m. The authors are indebted to Ted Jacobson and Thomas P. Themainassumptionmadein[11]isthesuppositionofthe Sotiriou for putting their attention to a numerical mistake in collinearityofvectorsof4-momentaoftheparticlesfallingin- thefirstversionofthepaper[19]. side and outside of the black hole (see (9)–(11)in [11]). The authorsof [11] say that these vectorsare “asymptoticallytan- genttothehorizongenerator”. References Firstnotethatfrom(8),(16)for A < 1andl l or A = 1, R ≤ [1] A.A.Grib,Yu.V.Pavlov,Mod.Phys.Lett.A23(2008)1151–1159. but l < 2 the limit of dr/dτ is not zero at the horizon. This [2] ThePierreAugerCollaboration,Science318(2007)938–943; derivativehasoppositesignsforthefallingandoutgoingparti- ThePierreAugerCollaboration,Astropart.Phys.34(2010)314–326. cles. Signsforothercomponentsofthe4-momentumareequal. [3] A.A.Grib,Yu.V.Pavlov,Int.J.Mod.Phys.D11(2002)433–436; In the limiting case (A = 1, l = 2) the expressions dt/dτ, A.A.Grib,Yu.V.Pavlov,Int.J.Mod.Phys.A17(2002)4435–4439. 1 [4] A.A.Grib,Yu.V.Pavlov,Grav.Cosmol.15(2009)44–48. dϕ/dτofthecomponentsofthe4-velocityoftheinfallingpar- [5] R.Penrose,RivistaNuovoCimentoI,Num.Spec.,(1969)252–276. ticle(6),(7)gotoinfinitywhenr r ,butdr/dτgoestozero. [6] K.Greisen,Phys.Rev.Lett.16(1966)748–750; H In spite ofsmallnessofr-compon→entsinthe expressionofthe G.T.Zatsepin,V.A.Kuzmin,JETPLett.4(1966)78–80. [7] D.E.Friedmann,arXiv:0912.1668. squareofthe4-momentumvectortheyhavethefactorg going rr [8] T.Piran,J.Shaham,J.Katz,Astrophys.J.Lett.196(1975)L107–L108. toinfinityatthehorizon. Soputtingthemtozerocanleadtoa T.Piran,J.Shaham,Phys.Rev.D16(1977)1615–1635. mistake. Toseeifu andv arecollinearitisnecessarytoput [9] M.Banados,J.Silk,S.M.West,Phys.Rev.Lett.103(2009)111102. (1) (1) thecoordinater ofthecollisionpointtothelimitr = M and [10] E.Berti,V.Cardoso,L.Gualtieri, F.Pretorius,U.Sperhake,Phys.Rev. H Lett.103(2009)239001. resolvetheuncertainties / and0/0. Forthefallingparticle ε = 1, l = 2 theexpressi∞ons∞forcomponentsofthe4-vectoru [[1112]] TA..NJa.cBobausoshne,vT,.PIn.tS.oJt.irMiooud,.PPhhyyss..RDev1.8L(e2t0t.0190)41(129051–01)200231.101. canbeeasilyfoundfrom(6)–(8).Fortheparticleoutgoingfrom [13] S.Chandrasekhar,TheMathematicalTheoryofBlackHoles,OxfordUni- theblackholeduetoexactsolutiononthehorizon(43)oneputs versityPress,Oxford,1983. [14] K.S.Thorne,Astrophys.J.191(1974)507–519. ε =l /2+α,whereαissomefunctionofrandl ,suchthat 1µ 1µ 1µ [15] A.A.Grib,Yu.V.Pavlov,arXiv:1010.2052. α 0whenr rH. Puttingthisε1µ into(6)–(8)onegetsfor [16] A.A.Grib,Yu.V.Pavlov,Physics–Uspekhi52(2009)257–261. → → 6 [17] K.Lake,Phys.Rev.Lett.104(2010)211102; K.Lake,Phys.Rev.Lett.104(2010)259903(E). [18] V.P.Frolov,I.D.Novikov,BlackHolePhysics:BasicConceptsandNew Developments,KluwerAcad.Publ.,Dordrecht,1998. [19] A.A.Grib,Yu.V.Pavlov,arXiv:1001.0756v1. 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.